力学系理論における相空間(そうくうかん、英: phase space)は、対象のシステムが取る状態全てから成る抽象的な空間である[1][2]。状態空間(じょうたいくうかん、英: state space)ともいう[3][2][4]。
物理学分野の解析力学(とくにハミルトン力学)では相空間と同種のものが、位置と運動量を座標した空間という狭い意味で用いられており、位相空間とも呼ばれる。数学分野では普通は topological space の意味で「位相空間」という用語を使うことから、混乱のおそれがあるときや数学分野では phase space の意を指すために「相空間」を使う。
背景と用語
力学系とは、システム(系)の将来の状態が現在の状態から一意に決まる決定論的な過程を、数学的に定式化したものを指す[5]。相空間 X とは、力学系の基本構成要素の一つで、対象のシステムが取り得る状態全てを集めてできる集合である[6][5]。さらに、現在の状態から次の状態を定める決定論的法則 F と時間 T の2つを加えて、(X, F, T) の一組で力学系が成立する[6][5]。相空間というものを導入することによって、空間上の1点を指定する形でシステムの状態を議論できるようになる[7]。すなわち相空間とは、システムの状態の振る舞いを解析するときに、そのシステムの状態は空間上でどんな動きをするのかという視点に切り替える概念的道具といえる[8]。
記号力学系では、相空間 X は記号列の集まりとなる[51]。記号が2種類から成り、記号列が両側無限列であるような場合、記号列 x は
で与えられる[51]。ここで、ai は記号 1 または 2 のいずれかを取る[51]。この場合の相空間 X は全ての記号列 x の集合で[51]、しばしば Σ とも記す[52][53][54]。さらに、異なる x 同士の距離を定義し、x に適用すると記号を一斉に左にずらす働きをするシフト写像σ を用意し、記号力学系を構成する[55]。
拡大相空間
式 (1) のような f が時間 t を陽に含まない微分方程式系は自律系と呼ばれる[56]。自律系の微分方程式系は、現在の状態 x のみで次の状態が定まるという力学系の決定論的な考え方と合致する[57]。一方で、以下のように t を陽に含む微分方程式系は非自律系と呼ばれる[58]。
(2 )
非自律系では x = (x1, x2, … xn) を定めても、ベクトル f (x) は一つに定まらず、時間によって変化する[59]。非自励系について相空間(x が定義されている空間)上で軌道を考えると、自励系とは異なり軌道が交差し得る[60]。
そこで、元の状態変数 x に時間 t を加えた組 (x, t) を座標とする空間 X × R を考える[59][61]。t を形式的に n + 1 番目の状態変数 xn + 1 ∈ R と見なせば、
(3 )
という風に自律系の n + 1 連立一階微分方程式に帰着でき、空間 X × R 上の各点には方程式の右辺を成分とするベクトルが一意に定まる[59][61]。元の n 次元相空間 X と区別し、このような n + 1 次元空間 X × R は拡大相空間(英: extended phase space)と呼ばれる[59][61]。拡大相空間で考えることによって軌道の交差が無くなるので、系の振る舞いを考察しやすくなる[62]。
非自律系が時間に関して周期的な場合、すなわち式 (2) において fk(x1,…, xn, t) = fk(x1,…, xn, t + τ) を充たすような定数 τ ∈ R が存在する場合、拡大相空間は X × R よりも X × T1 の空間で考える方が適する[63]。T1 は T1 = R/τZ で定まる1次元トーラスである[63]。
狭い意味での「相空間」は、このような力学分野における位置と運動量を座標にした 2n 次元空間を指す[67]。力学における「相空間」も、数学における「相空間」も、もとは phase space からの和訳で、数学以外では「位相空間」とも訳される[64][68]。しかし、数学では前出の topological space の意味で「位相空間」という用語を使うので、数学分野または混合のおそれがある場合には phase space の意味では「相空間」という用語を使う[64][68]。「phase space」という用語自体は、力学における「phase space(位相空間)」の方が先で、それを借用して数学でも「phase space(相空間)」という用語で用いられている[68]。