数学の特に圏論における(小さい)圏の圏(ちいさいけんのけん、英: category of small categories)Cat は、すべての小さい圏を対象とし、圏の間の函手を射とする圏である。実際には、Cat は自然変換を二次元の射(英語版) (2-射) とする二次圏(英語版) (2-圏) を成すものと見なせる。
Cat の始対象は対象も射も持たない空圏 0 であり[1]、終対象はただ一つの対象とただ一つの射(唯一の対象上の恒等射)のみからなる圏 1(自明圏あるいは終圏という)である[2]。
小さい圏の圏 Cat それ自身は大きい圏であり、それゆえ自身を対象として含むことはない。ラッセルの逆理(の圏版)を避けるには「すべての(小さいとは限らない)圏の圏」はあってはならないが、「すべての圏の擬圏」(quasicategory[注釈 1] of categories) CATを考える[注釈 2]ことはできる(擬圏は大きい圏を対象にできるという意味で圏ではないとすれば、圏の擬圏は自身を対象に含まない)。
性質
圏の圏 Cat は、各圏に対してその恒等射と射の合成を忘れることにより、箙の圏 Quiv への忘却函手(英語版) U: Cat → Quiv が定義できる。この忘却函手 U の左随伴 F: Quiv → Cat は各箙にそれが生成する自由圏(英語版)を対応させる自由函手である。
注
注釈
出典
関連項目
外部リンク
|
---|
主要項目 | |
---|
関手 | |
---|
具体的圏 | |
---|
圏の類 | |
---|
一般化 | |
---|
人物 | |
---|
関連分野 | |
---|
関連項目 | |
---|
カテゴリ |