プロス数
プロス数(プロスすう、英: Proth number)とは、以下の制約を満たす式で表される自然数のことである。プロス数の名は、19世紀フランスの数学者 フランソワ・プロス(英語版) にちなんで付けられた。
- 制約1: は正の奇数。
- 制約2: は正の整数。
- 制約3: である。
※ 制約3が無い場合、1より大きなあらゆる奇数がこの式から生まれてしまう[1]。
プロス数の最初の数項は
- 3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241,… (オンライン整数列大辞典の数列 A080075)
である。
カレン数 (n·2n+1) や フェルマー数 (22n+1) は、プロス数の特殊なケースと考えることもできる。
プロス素数
プロス素数(プロスそすう、英: Proth prime)とは、素数であるプロス数のことである[2]。
プロス素数の最初の数項は
- 3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857, …(オンライン整数列大辞典の数列 A080076)
である。プロス素数は無数にあると予想されているが、証明されていない。
プロスの定理(英語版)を用いて、プロス数が素数であるか否かの判定を行うことができる[3]。
をプロス数とする。以下の合同式を満たす整数があれば、はプロス素数である。なければ、プロス素数でない。
すなわち、に1を加えた数がで割り切れるよう、を探せばよい。
2016年現在[update]、発見済みである最大のプロス素数は 10223×231172165 + 1 であり、9,383,761桁の大きさを持つ[4]。これが素数であることは PrimeGrid プロジェクトの Péter Szabolcs によって導き出された事が2016年11月6日に発表された[5]。この数は、メルセンヌ素数でないような既知の最大の素数でもある[6]。
関連項目
脚注
|
---|
生成式 | |
---|
漸化式(英語版) | |
---|
各種の性質 | |
---|
基数依存 | |
---|
組 |
- 互いに素
- 双子 (p, p + 2)
- Bi-twin chain (n − 1, n + 1, 2n − 1, 2n + 1, …)
- 三つ子 (p, p + 2 or p + 4, p + 6)
- 四つ子 (p, p + 2, p + 6, p + 8)
- k−Tuple
- いとこ (p, p + 4)
- セクシー (p, p + 6)
- 陳
- ソフィー・ジェルマン (p, 2p + 1)
- カニンガム鎖 (p, 2p ± 1, …)
- 安全 (p, (p − 1)/2)
- 算術数列(英語版) (p + an; n = 0, 1, …)
- 平衡 (p − n, p, p + n)
|
---|
桁数 | |
---|
複素数 | |
---|
合成数 | |
---|
関連する話題 | |
---|
最初の50個 | |
---|
素数の一覧 |
|
|