Tempo di arresto

Nella teoria della probabilità, in particolare nello studio dei processi stocastici, un tempo di arresto, conosciuto anche come tempo di Markov, è uno specifico tipo di "tempo casuale", il cui valore dipende solo dagli eventi successi prima o nell'istante stesso. Ad esso può essere associato una regola di arresto, ovvero una regola per definire il tempo d'arresto.

Uno dei risultati più importanti sui tempi di arresto è il teorema di arresto opzionale di Doob.

Definizione

Rispetto a una sequenza di variabili aleatorie un tempo di arresto è una variabile aleatoria con la proprietà che per ogni l'evento dipende solo dalle variabili .

Una definizione più generale può essere data attraverso le filtrazioni: sia un insieme ordinato (ad esempio oppure ) e sia uno spazio di probabilità con filtrazione . Allora una variabile casuale su è detta tempo di arresto se per ogni t in .

In altre parole, è possibile decidere se l'evento è accaduto conoscendo gli eventi in : si dice che è -misurabile.

La definizione può anche richiedere che , ovvero che sia quasi certamente finito, ma in alcuni casi questa condizione viene omessa.

Proprietà

Sono equivalenti i seguenti fatti:

  1. è un tempo di arresto
  2. l'evento
  3. l'evento

Dimostrazione

(1) implica (3) e (3) implica (1)

L'evento è pari al complementare di per ogni appartenente a , ossia .

(1) implica (2)

Dato che è un tempo di arresto si ha che

(2) implica (1)

L'evento può essere visto come l'unione di tutti gli eventi per ogni , ossia . Considerando che appartiene a e appartiene a , in quanto , si può dedurre che tutta l'unione degli eventi appartiene a .

Istante aleatorio

Se è un tempo di arresto rispetto alla filtrazione si può definire l'evento come l'intersezione di tutti gli eventi , per ogni , ossia . Per la proprietà (1) dei tempi di arresto si ha che l'evento appartiene a e quindi l'intersezione su tutti i appartiene all'or logico su tutta la filtrazione, ossia , data dalla -algebra generata dall'unione della filtrazione. Pertanto si definisce la tribù con .

Si definisce la tribù , che rappresenta l'informazione disponibile ad ogni tempo . Se è un processo stocastico reale e una variabile aleatoria discreta dallo spazio a valori in è possibile definire la variabile aleatoria reale , che assume il valore del processo all'istante aleatorio , come la somma di tutte le quando più un valore quando , ossia , dove è la funzione indicatrice dell'evento .

Criterio di misurabilità ad un istante aleatorio

Se il processo è adattato alla filtrazione e è un tempo di arresto rispetto a , allora il valore del processo all'istante aleatorio è -misurabile. In altre parole la variabile aleatoria è misurabile rispetto alla tribù .

Dimostrazione

Per definizione di valore ad un istante aleatorio si ha che . Dato che è adattato rispetto a si ha che ogni è -misurabile. Essendo un tempo di arresto anche la funzione indicatrice dell'evento è -misurabile, mentre la funzione indicatrice dell'evento è misurabile rispetto alla tribù . Pertanto tutta la somma è misurabile rispetto a e quindi per ogni . In altre parole per ogni boreliano della retta reale, l'evento che il valore del processo arrestato al tempo aleatorio appartenga a è misurabile rispetto a .

L'evento è pari all'evento , in quanto . Avendo che in quanto il processo è adattato rispetto alla filtrazione e in quanto è un tempo di arresto rispetto alla filtrazione, anche l'evento intersezione è -misurabile.

Pertanto , ossia è -misurabile.

Processo stocastico arrestato ad un tempo aleatorio

Se è un processo stocastico reale adattato ad una filtrazione e è un tempo di arresto rispetto a , si chiama il processo arrestato al tempo , il processo così definito: , dove

Il processo arrestato ad un istante aleatorio assume quindi gli stessi valori del processo stocastico originario, per tutti gli istanti inferiori al tempo di arresto, mentre per gli istanti maggiori è pari al valore del processo al tempo di arresto.

Esempio

Dato un processo e un tempo di arresto , il processo relativo arrestato è definito dai valori delle variabili aleatorie di negli istanti da a , mentre dall'istante in poi assume sempre il valore di .

Misurabilità di un processo arrestato

Dato che è un processo derivato da e è adattato rispetto alla filtrazione , anche è misurabile rispetto a . Infatti sono misurabili rispetto a , per ogni e la tribù è più piccola o al più uguale a quella di in quanto . Quindi anche è adattato rispetto a .

Esempi

Se consideriamo il caso di due persone che giocano a testa e croce, vincendo o perdendo 1 euro (passeggiata aleatoria simmetrica su ) e con un capitale finito, si possono definire le seguenti regole di arresto:

  • Fermarsi dopo una giocata o un certo numero di giocate, ovvero nel caso in cui sia un tempo deterministico, è una regola d'arresto.
  • Fermarsi quando uno dei due finisce i soldi è una regola di arresto.
  • Fermarsi quando uno raggiunge il massimo di vincite non è una regola di arresto, siccome presuppone di conoscere anche le scommesse successive.
  • Fermarsi quando uno raddoppia il proprio capitale, se si richiede che il tempo di arresto sia quasi certamente finito, non è una regola di arresto, in quanto c'è una probabilità positiva che questo non accada.

Bibliografia

  • David Williams, Probability with Martingales, Cambridge Mathematical Textbooks, 1991, ISBN 978-0-521-40605-5.
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!