In fisica il pacchetto d'onda è un pacchetto contenente un numero arbitrario di onde. In meccanica quantistica, in particolare, il modulo al quadrato della funzione d'onda descrive la probabilità che una particella o più particelle in un determinato stato (specificato dal pacchetto in questione) abbiano una data posizione nello spazio o una data quantità di moto.
Si tratta di un insieme infinito di onde sinusoidali con diverso numero d'onda che interferiscono costruttivamente in una piccola regione e distruttivamente nel resto dello spazio.[1] L'inviluppo del pacchetto può rimanere costante oppure cambiare, in tal caso si parla di dispersione del pacchetto d'onda. La meccanica quantistica interpreta il (modulo al quadrato del) pacchetto d'onda come la distribuzione spaziale di probabilità relativa alla posizione o alla quantità di moto (a seconda della base scelta) di una particella, e grazie all'equazione di Schrödinger è possibile ottenere l'evoluzione temporale del sistema descritto dal pacchetto.
Due pietre miliari nella fondazione della meccanica quantistica sono
la teorizzazione dell'esistenza del fotone da parte di Einstein, che per primo caratterizza come particellare ciò che fino ad allora era considerato un fenomeno unicamente ondulatorio come la luce (si confronti la voce principio di complementarità);
la prima matematizzazione da parte di Planck del quanto o pacchetto di energia relativamente allo studio della radiazione di corpo nero: in cui l'energia è un multiplo intero di , costante di Planck, e della frequenza .
Il problema della quantizzazione della radiazione di corpo nero, spazzò via quello della catastrofe ultravioletta che assillava le menti dei fisici dell'epoca.
dove c è la velocità di propagazione dell'onda in un dato mezzo. Le soluzioni sono dipendenti dal tempo, quindi, , e l'equazione ha per soluzione onde piane, ossia:
Il fattore viene dalle convenzioni delle trasformate di Fourier. L'ampiezza contiene il coefficiente lineare di sovrapposizione tra le onde piane, definito da:
.
Ponendo:
si ottiene
e
Pacchetto d'onda in un mezzo non dispersivo
Si vuole in questa sezione considerare il caso di una sorgente d'onde che emetta su frequenze comprese in un ben determinato intervallo: l'esempio più familiare di questo tipo di situazione può essere quello del Sole, visto dalla Terra. Si esamina perciò un pacchetto d'onde le cui frequenze angolari sono comprese tra due valori e , in cui le velocità delle singole componenti sono tutte uguali tra loro. L'n-esima o generica componente del pacchetto ha equazione
con una certa fase che sarà dipendente dalla frequenza angolare. Si ha la necessità di capire come tutte le onde dell'intervallo interagiscano: per ottenere la risultante è necessario sfruttare l'integrale normalizzato
A questo punto è già stata effettuata una semplificazione: la fase viene considerata nulla, scelta che si rivelerà comoda nel seguito della trattazione. Ponendo e poiché la velocità della luce
da cui l'equazione generale del pacchetto d'onda è
in cui:
La modulante è della forma : ecco che si rivela utile aver posto la fase nulla. In questo modo il massimo della curva ha ascissa nell'origine del sistema di riferimento cartesiano e ordinata pari a sia che si esamini la variabile spaziale sia che si consideri quella temporale. Si tratta ora di cercare quando l'inviluppo della funzione è significativamente diverso da 0.
Al tempo i minimi della funzione si avranno in
con , e a questo punto è bene considerare come significativo il solo inviluppo centrale, tale cioè che per una lunghezza totale dell'intervallo che è . Vale lo stesso ragionamento anche per , in cui
con . In definitiva, è possibile definire un tempo di coerenza e una lunghezza di coerenza che comprendano tutti quei punti dell'onda che sono significativamente diversi dallo 0. Si possono così dedurre le relazioni di indeterminazione per il pacchetto d'onda in un mezzo non dispersivo
Il caso particolare della luce monocromatica è incluso nel pacchetto d'onda quando si consideri
da cui si ottiene
cioè il pacchetto ha ondulamenti così ampi che è piatto. Per un impulso breve invece
e quindi:
Qui invece il pacchetto contiene tutto lo spettro di frequenze comprese tra e .
Il laser ha una e può quindi dirsi una luce coerente. Il caso della luce bianca Quindi e .
Quando si analizza la somma delle onde luminose comprese in un certo intervallo di frequenze, ma che propagano in un mezzo dispersivo, non si possono più considerare le velocità delle componenti uguali: in questo caso a rimanere costante è la sola velocità angolare ; si vuole, invece, studiare proprio la velocità risultante del pacchetto d'onda. Sarà perciò a dipendere da e si ha la necessità di studiare l'andamento di questa variabile. Per è possibile approssimarne l'andamento con un polinomio di Taylor troncato al primo ordine:
e poi fare l'integrale della nuova funzione dove però in quanto stiamo propagando in un mezzo diverso dal vuoto e dunque questa relazione può dichiararsi valida per un determinato coefficiente dipendente dal mezzo (è il coefficiente di rifrazione della legge di Snell). Ove si ponga
Si è ottenuta una forma molto simile alla precedente per il mezzo non dispersivo in cui
È ora possibile studiare più in dettaglio questa particolare configurazione del pacchetto d'onda. Si può introdurre subito la velocità di fase del pacchetto d'onda
dove i termini del rapporto sono definiti come per il pacchetto d'onda nel mezzo non dispersivo; è altresì possibile analizzare il termine