Il modello di Malthus si applica a una popolazione di individui isolata (che non interagisce con altre popolazioni), dotata di infinite risorse di spazio e cibo. La variazione del numero di individui dipende dunque esclusivamente dal numero di nascite e di morti che avvengono nell'unità di tempo. L'ipotesi del modello di Malthus è che il tasso netto di riproduzione (ovvero la differenza tra le nascite e le morti nell'unità di tempo) sia costante.
Sia il numero di individui e sia il tasso netto di crescita per individuo. Possiamo studiare un modello discreto mediante l'equazione:
oppure, nell'ipotesi che la popolazione sia molto numerosa e che i tempi di osservazione siano lunghi, possiamo considerare un modello continuo, ottenendo l'equazione differenziale:
Nel caso discreto l'andamento della popolazione è descritto da una progressione geometrica di ragione :
Nel caso continuo, la soluzione dell'equazione differenziale è l'esponenziale:
In entrambi i casi si vede che, se la popolazione rimane costante (com'è ragionevole), se la popolazione tende ad estinguersi, mentre se la popolazione "esplode" per tempi grandi. In quest'ultimo caso quindi il modello è estremamente irrealistico, tuttavia fornisce una buona approssimazione per tempi brevi nel caso in cui la popolazione disponga di risorse abbondanti. È stato infatti registrato un buon accordo con i dati demografici mondiali nel periodo 1700-1961.