Isolotti dei Gabbiani

Scogli dei Gabbiani
Galebovi otoci
L'isola Calva con, all'estrema sinistra, gli isolotti dei Gabbiani e lo scoglio Nudo Piccolo
Geografia fisica
LocalizzazioneMare Adriatico
Coordinate44°49′34″N 14°49′33″E
ArcipelagoIsole Quarnerine
Superficie0,0117 km²
Numero isole2
Altitudine massimam s.l.m.
Geografia politica
StatoCroazia (bandiera) Croazia
RegioneRegione litoraneo-montana
ComuneLoparo
Demografia
Abitanti0
Cartografia
Mappa di localizzazione: Croazia
Scogli dei Gabbiani
Scogli dei Gabbiani
voci di isole della Croazia presenti su Wikipedia

Gli isolotti o scogli dei Gabbiani[1] (in croato Galebovi otoci) sono due isolotti disabitati della Croazia, che fanno parte dell'arcipelago delle isole Quarnerine e sono situati a sud dell'isola Calva e a ovest della costa dalmata.

Amministrativamente appartengono al comune di Loparo, nella regione litoraneo-montana.

Geografia

Nel punto più ravvicinato, gli scogli dei Gabbiani distano poco più di 4,2 km[2] dalla terraferma, dalle parti dell'insediamento di Clada nel comune di Segna. Situati tra il canale di Arbe e il canale della Morlacca, distano appena 4 m[3] dall'isola Calva. Gli scogli dei Gabbiani sono una propaggine del promontorio all'estremità meridionale dell'isola Calva[4]. A sud degli scogli dei Gabbiani si trova lo scoglio Nudo Piccolo (hrid Mali Goli)[4].

L'isolotto meridionale, il maggiore, ha una forma allungata ed è orientato in direzione nord-sud. Misura 175 m[5] di lunghezza e 70 m[6] di larghezza massima; possiede una superficie di 0,0077 km²[7]. Nella parte settentrionale, raggiunge la sua elevazione massima di 9 m s.l.m.[4] (44°49′32″N 14°49′34″E)

L'isolotto settentrionale ha invece una forma pentagonale, con la punta rivolta a sud e con due brevi promontori alle estremità della base. Misura 105 m[8] di lunghezza e 60 m[9] di larghezza massima; possiede una superficie di 0,004 km²[7]. (44°49′36″N 14°49′32″E)

Note

  1. ^ Natale Vadori, Italia Illyrica sive glossarium italicorum exonymorum Illyriae, Moesiae Traciaeque ovvero glossario degli esonimi italiani di Illiria, Mesia e Tracia, 2012, San Vito al Tagliamento (PN), Ellerani, p. 432, ISBN 978-88-85339293.
  2. ^ Distanza calcolata su Wikimapia
  3. ^ Distanza calcolata su Wikimapia
  4. ^ a b c (HR) Mappa topografica della Croazia 1:25000, su preglednik.arkod.hr. URL consultato il 14 gennaio 2017.
  5. ^ Lunghezza su Wikimapia
  6. ^ Larghezza su Wikimapia
  7. ^ a b PREGLED, POLOŽAJ I RASPORED MALIH, POVREMENO NASTANJENIH I NENASTANJENIH OTOKA I OTOČIĆA [Analisi, posizione e schema di isolotti e piccole isole, periodicamente abitati e disabitati] (PDF), su razvoj.gov.hr, p. 9. URL consultato il 9 agosto 2016.
  8. ^ Lunghezza dell'isolotto minore su Wikimapia
  9. ^ Larghezza dell'isolotto minore su Wikimapia

Voci correlate

Collegamenti esterni

Read other articles:

Romanian-American journalist and political analyst Vladimir SocorTimur Onica (left), Vladislav Kulminski (center) and Vladimir Socor (right)Born (1945-08-03) August 3, 1945 (age 78)Bucharest, Kingdom of RomaniaCitizenshipRomaniaUnited StatesAlma materUniversity of Bucharest Columbia UniversityEmployer(s)Jamestown Foundation Radio Free EuropeParentMatei Socor Vladimir Socor (born 3 August 1945 in Bucharest[1]) is a Romanian-American political analyst of East European affairs ...

 

В другом языковом разделе есть более полная статья Air pollution (англ.). Загрязнение атмосферы промышленными выбросами в Нижнем Новгороде Загрязнение воздуха тепловозом Загрязнение атмосферы Земли или загрязнение воздуха[1] происходит, когда в атмосферу Земли попа...

 

Miniatuur van Maria van Gelre (Berlijn, SBB-PK, mgq42), fol. 19v Maria van Gelre, geboren Marie d’Harcourt (La Saussaye, 24 februari 1380 - in of na 1428 maar voor 1434) was vanaf 1405 hertogin van Gelre. Maria is vooral bekend door het gebedenboek dat ze heeft laten maken en dat gezien wordt als een van de belangrijkste kunstschatten uit laatmiddeleeuws Gelre.[1][2] Jeugd Maria van Gelre werd geboren als Marie d’Harcourt op 24 februari 1380 in La Saussaye in Normandië al...

Brad Dubberley2012 Australian Paralympic team portrait of DubberleyPersonal informationNationality AustraliaBorn (1981-06-28) 28 June 1981 (age 42)Kurri Kurri, New South WalesSportDisability class3.5 Medal record Wheelchair rugby Paralympic Games- Athlete 2000 Sydney Mixed Paralympic Games- Coach 2008 Beijing Mixed 2012 London Mixed 2016 Rio Mixed World Wheelchair Rugby Championships - Athlete 2002 Gothenburg Mixed World Wheelchair Rugby Championships - Coach 2010 Vancouver Mix...

 

Eleanor Roosevelt tenant la Déclaration universelle des droits de l'homme de 1948. La Déclaration des droits (Bill of Rights) de 1689. Les droits de l'homme (parfois écrits « droits de l'Homme »[N 1]), également appelés droits humains ou droits de la personne (par exemple dans un contexte de communication gouvernementale au Canada)[N 2], sont un concept à la fois philosophique, juridique et politique, selon lequel tout être humain possède des droits universels, inaliénabl...

 

Raigo atau Raego adalah tarian dan syair tradisional yang berasal dari Sulawesi Tengah, Indonesia. Kesenian ini hidup di masyarakat Suku Kulawi, Suku Kaili, dan Suku Bada. Suku bangsa ini menamakan Raigo dengan penyebutan berbeda. Suku Kulawi menyebut Raego, Kaili menyebut Rego, dan Bada menyebut Raigo.[1] Raigo adalah menari dalam formasi lingkaran sambil menyanyikan syair-syair panjang dalam bahasa Uma tua.[2] Bahasa ini merupakan bahasa daerah yang sudah tidak dipakai dalam...

Legislative Assembly constituency in Karnataka, India UdupiConstituency for the Karnataka Legislative AssemblyConstituency detailsCountryIndiaRegionSouth IndiaStateKarnatakaDistrictUdupiMember of Legislative Assembly16th Karnataka Legislative AssemblyIncumbent Yashpal Anand Suvarna PartyBharatiya Janata PartyElected year2023 The Udupi Assembly constituency is one of the 224 seats in the Indian state of Karnataka's Assembly (State Assembly). It is part of Udupi Chikmagalur seat of the Lok Sabh...

 

Antihypertensive drug of the calcium channel blocker class AzelnidipineClinical dataTrade namesCalBlock,AZUSA,AzovasAHFS/Drugs.comInternational Drug NamesRoutes ofadministrationOralATC codenoneLegal statusLegal status In general: ℞ (Prescription only) Identifiers IUPAC name 3-1-Benzhydryl-3-azetidinyl 5-isopropyl 2-amino-6-methyl-4-(m-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate CAS Number123524-52-7 NPubChem CID65948ChemSpider59352 YUNIIPV23P19YUGKEGGD01145 Y...

 

Indian subsidiary of Daimler Truck AG This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Daimler India Commercial Vehicles – news · newspapers · books · scholar · JSTOR (December 2011) (Learn how and when to remove this template message) Daimler India Commercial Vehicles Pvt.Ltd.TypeSubsidiaryIndustryAutomotive...

1970 studio album by Quicksilver Messenger ServiceWhat About Me[1]Studio album by Quicksilver Messenger ServiceReleasedDecember 1970RecordedMay – June 1970GenrePsychedelic rock, acid rockLength45:09LabelCapitolProducerJohn PalladinoQuicksilver Messenger Service chronology Just for Love(1970) What About Me[1](1970) Quicksilver(1971) What About Me is the fifth album by American psychedelic rock band Quicksilver Messenger Service. Released in December 1970 and recorded ...

 

Railway station in Karachi, Pakistan This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Landhi railway station – news · newspapers · books · scholar · JSTOR (August 2015) (Learn how and when to remove this template message) Landhi Railway Stationلانڈھی ریلوے اسٹیشنلانڍي ريلوي اسٽي...

 

Untuk kegunaan lain, lihat PTN.Stasiun Patukan P02 Stasiun Patukan, 2021LokasiAmbarketawang, Gamping, Sleman, Daerah Istimewa Yogyakarta 55599IndonesiaKetinggian+88 mOperatorKereta Api IndonesiaDaerah Operasi VI YogyakartaLetak dari pangkalkm 538+253 lintas Bogor—Bandung—Banjar—Kutoarjo—Yogyakarta[1]Jumlah peron3 (satu peron sisi dan dua peron pulau yang sama-sama agak tinggi, namun tidak ada peron di antara jalur 2 dengan jalur 3 dan jalur 4 dengan jalur 5)Jumlah jalur5 (jalu...

Station of the Tehran Metro Rahahan Metro Stationایستگاه مترو راه‌آهنTehran Metro StationGeneral informationLocation Rah Ahan Square, Districts 11-16, Tehran, Tehran CountyTehran Province, IranOperated byTehran Urban and Suburban Railways Organization (Metro)ConnectionsTehran railway station Tehran BRT  BRT 7 · 107 Rahahan-Tajrish· 152 Rahahan-Parkway Tehran Buses 245 Rahahan-Naziabad-Shahr-e Rey Metro246 Rahahan-Khazaneh-Shahr-e Rey Metro258 Javadieh-Fayyazbakh...

 

Declaration of Sainthood Statue outside the Church of the Immaculate Heart of Mary, popularly known as Brompton Oratory, in London John Henry Newman (21 February 1801 – 11 August 1890) was a Roman Catholic theologian, philosopher and cardinal who converted to Roman Catholicism from Anglicanism in October 1845. In early life, he was a major figure in the Oxford Movement to bring the Church of England back to its roots. Eventually his studies in history persuaded him to become a Roman Catholi...

 

Cet article est une ébauche concernant les relations internationales. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour un article plus général, voir Sommet du G8. Sommet du G7 de 1979 La résidence de réception choisie pour le G7, à Tokyo. Type conférence diplomatique Édition 5e Pays Japon Localisation Tokyo Date 28 juin 1979 au 29 juin 1979 Participant(s) Allemagne, États-Unis, France, Italie, Japon,...

Finding linear approximation of function at given point For the linearization of a partial order, see Linear extension. For the linearization in concurrent computing, see Linearizability. In mathematics, linearization is finding the linear approximation to a function at a given point. The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equil...

 

Kerala based salafi organisation This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kerala Nadvathul Mujahideen – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this template message) Kerala Nadvathul MujahideenAlmanar magazineAbbreviationKNMFormation1950[1]TypeReli...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: East Delaware Tunnel – news · newspapers · books · scholar · JSTOR (August 2021) (Learn how and when to remove this template message) This article is missing information about the East Delaware Tunnel Outlet, which has a capacity of 18 megawatts,. Please expand...

2009 video game 2009 video gameThe Beatles: Rock BandDeveloper(s)Harmonix[a]Publisher(s)MTV GamesDirector(s)Josh RandallProducer(s)Naoko TakamotoJason KendallPete MaguireAlex RossiJason WarburgHeather WilsonDesigner(s)Chris FosterSylvain DubrofskyCasey MaloneProgrammer(s)Marc FluryJames FlemingDan SchmidtArtist(s)Dare MathesonWriter(s)Helen McWilliamsBrett MilanoSeriesRock BandPlatform(s)PlayStation 3, Wii, Xbox 360ReleaseSeptember 9, 2009Genre(s)Rhythm gameMode(s)Single-player, multi...

 

1991 American television series Fishing with JohnDVD coverCreated byJohn LurieStarringJohn LurieJim JarmuschTom WaitsMatt DillonWillem DafoeDennis HopperNarrated byRobb WebbOpening themeFishing With John by John LurieCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes6ProductionExecutive producerKenji OkabeRunning time30 minutesOriginal releaseNetworkIFCBravoReleaseNovember 20 (1991-11-20) –December 25, 1991 (1991-12-25)RelatedPainting with Jo...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!