Isotop lawrensium

Isotop utama lawrensium
Iso­top Peluruhan
kelim­pahan waktu paruh (t1/2) mode pro­duk
254Lr sintetis 13 dtk 78% α 250Md
22% ε 254No
255Lr sintetis 21,5 dtk α 251Md
256Lr sintetis 27 dtk α 252Md
259Lr sintetis 6,2 dtk 78% α 255Md
22% SF
260Lr sintetis 2,7 mnt α 256Md
261Lr sintetis 44 mnt SF/ε?
262Lr sintetis 3,6 jam ε 262No
264Lr sintetis 3 jam[1] SF
266Lr sintetis 10 jam SF

Lawrensium (103Lr) adalah sebuah unsur sintetis, dan dengan demikian berat atom standarnya tidak dapat diberikan. Seperti semua unsur sintetis lainnya, ia tidak memiliki satu pun isotop stabil. Isotop lawrensium pertama yang dibuat adalah 258Lr pada tahun 1961. Ada empat belas isotop lawrensium yang diketahui, dari 251Lr hingga 266Lr, dan 1 isomer (253mLr). Isotop lawrensium yang diketahui berumur paling panjang adalah 266Lr dengan waktu paruh 11 jam.

Daftar isotop

Nuklida
[n 1]
Z N Massa isotop (Da)
[n 2][n 3]
Waktu paruh
Mode
peluruhan

[n 4]
Isotop
anak

Spin dan
paritas
[n 5][n 6]
Energi eksitasi[n 6]
251Lr[2] 103 148 251,09418(32)# 27(+118-13) mdtk SF (beberapa)
252Lr[n 7] 103 149 252,09526(26)# 390(90) mdtk
[0,36(+11−7) dtk]
α (90%) 248Md
β+ (10%) 252No
SF (1%) (beberapa)
253Lr[n 8] 103 150 253,09509(22)# 580(70) mdtk
[0,57(+7−6) dtk]
α (90%) 249Md (7/2−)
SF (9%) (beberapa)
β+ (1%) 253No
253mLr[n 8] 30(100)# keV 1,5(3) dtk
[1,5(+3−2) dtk]
(1/2−)
254Lr[n 9] 103 151 254,09648(32)# 13(3) dtk α (78%) 250Md
β+ (22%) 254No
SF (0,1%) (beberapa)
255Lr 103 152 255,096562(19) 22(4) dtk α (69%) 251Md 7/2−#
β+ (30%) 255No
SF (1%) (beberapa)
256Lr 103 153 256,09849(9) 27(3) dtk α (80%) 252Md
β+ (20%) 256No
SF (0,01%) (beberapa)
257Lr 103 154 257,09942(5)# 646(25) mdtk α (99,99%) 253Md 9/2+#
β+ (0,01%) 257No
SF (0,001%) (beberapa)
258Lr 103 155 258,10176(11)# 4,1(3) dtk α (95%) 254Md
β+ (5%) 258No
259Lr 103 156 259,10290(8)# 6,2(3) dtk α (77%) 255Md 9/2+#
SF (23%) (beberapa)
β+ (0,5%) 259No
260Lr 103 157 260,10551(13)# 2,7 mnt α (75%) 256Md
β+ (15%) 260No
SF (10%) (beberapa)
261Lr 103 158 261,10688(22)# 44 mnt SF (beberapa)
α (langka) 257Md
262Lr 103 159 262,10961(22)# 216 mnt β+ 262No
α (langka) 258Md
264Lr[n 10] 103 161 264,11420(47)# 3 jam[3] SF (beberapa)
266Lr[n 11] 103 163 266,11983(56)# 11 jam SF (beberapa)
Header & footer tabel ini:  view 
  1. ^ mLr – Isomer nuklir tereksitasi.
  2. ^ ( ) – Ketidakpastian (1σ) diberikan dalam bentuk ringkas dalam tanda kurung setelah digit terakhir yang sesuai.
  3. ^ # – Massa atom bertanda #: nilai dan ketidakpastian yang diperoleh bukan dari data eksperimen murni, tetapi setidaknya sebagian dari tren dari Permukaan Massa (trends from the Mass Surface, TMS).
  4. ^ Mode peluruhan:
    SF: Fisi spontan
  5. ^ ( ) nilai spin – Menunjukkan spin dengan argumen penempatan yang lemah.
  6. ^ a b # – Nilai yang ditandai # tidak murni berasal dari data eksperimen, tetapi setidaknya sebagian dari tren nuklida tetangga (trends of neighboring nuclides, TNN).
  7. ^ Tidak disintesis secara langsung, terjadi sebagai produk peluruhan 256Db
  8. ^ a b Tidak disintesis secara langsung, terjadi sebagai produk peluruhan 257Db
  9. ^ Tidak disintesis secara langsung, terjadi sebagai produk peluruhan 258Db
  10. ^ Tidak disintesis secara langsung, terjadi sebagai produk peluruhan 288Mc
  11. ^ Tidak disintesis secara langsung, terjadi sebagai produk peluruhan 294Ts

Nukleosintesis

Fusi dingin

205Tl(50Ti,xn)255−xLr (x=2?)

Reaksi ini dipelajari dalam serangkaian percobaan pada tahun 1976 oleh Yuri Oganessian dan timnya di FLNR. Bukti diberikan untuk pembentukan 253Lr di saluran keluar 2n.

203Tl(50Ti,xn)253−xLr

Reaksi ini dipelajari dalam serangkaian percobaan pada tahun 1976 oleh Yuri Oganessian dan timnya di FLNR.

208Pb(48Ti,pxn)255−xLr (x=1?)

Reaksi ini dilaporkan pada tahun 1984 oleh Yuri Oganessian di FLNR. Timnya dapat mendeteksi peluruhan 246Cf, sebuah turunan dari 254Lr.

208Pb(45Sc,xn)253−xLr

Reaksi ini dipelajari dalam serangkaian percobaan pada tahun 1976 oleh Yuri Oganessian dan timnya di FLNR. Hasilnya tidak tersedia.

209Bi(48Ca,xn)257−xLr (x=2)

Reaksi ini telah digunakan untuk mempelajari sifat spektroskopi 255Lr. Tim di GANIL menggunakan reaksi tersebut pada tahun 2003 dan tim di FLNR menggunakannya antara 2004–2006 untuk memberikan informasi lebih lanjut tentang skema peluruhan 255Lr. Pekerjaan ini memberikan bukti untuk tingkat isomer di 255Lr.

Fusi panas

243Am(18O,xn)261−xLr (x=5)

Reaksi ini pertama kali dipelajari pada tahun 1965 oleh tim di FLNR. Mereka mampu mendeteksi aktivitas dengan karakteristik peluruhan 45 detik, yang ditetapkan ke to256Lr atau 257Lr. Pekerjaan selanjutnya menyarankan penetapan ke 256Lr. Studi lebih lanjut pada tahun 1968 menghasilkan aktivitas alfa 8,35-8,60 MeV dengan waktu paruh 35 detik. Aktivitas ini juga awalnya ditetapkan ke 256Lr atau 257Lr dan kemudian hanya 256Lr.

243Am(16O,xn)259−xLr (x=4)

Reaksi ini dipelajari pada tahun 1970 oleh tim di FLNR. Mereka mampu mendeteksi aktivitas alfa 8,38 MeV dengan waktu paruh 20-an. Reaksi ini dipelajari pada tahun 1970 oleh tim di FLNR. Mereka mampu mendeteksi aktivitas alfa 8,38 MeV dengan waktu paruh 20 detik. Reaksi ini ditetapkan ke 255Lr.

248Cm(15N,xn)263−xLr (x=3,4,5)

Reaksi ini dipelajari pada tahun 1971 oleh tim di LBNL dalam studi besar mereka tentang isotop lawrensium. Mereka dapat menetapkan aktivitas alfa ke 260Lr, 259Lr dan 258Lr dari saluran keluar 3-5n.

248Cm(18O,pxn)265−xLr (x=3,4)

Reaksi ini dipelajari pada tahun 1988 di LBNL untuk menilai kemungkinan pemroduksian 262Lr dan 261Lr tanpa menggunakan target 254Es yang eksotis. Reaksi ini juga digunakan untuk mencoba mengukur cabang penangkapan elektron (electron capture, EC) di 261mRf dari saluran keluar 5n. Setelah ekstraksi komponen Lr(III), mereka mampu mengukur fisi spontan 261Lr dengan peningkatan waktu paruh 44 menit. Penampang produksi adalah 700 pb. Atas dasar ini, cabang penangkapan elektron 14% dihitung jika isotop ini diproduksi melalui saluran 5n daripada saluran p4n. Energi bombardir yang lebih rendah (93 MeV dibandingkan 97 MeV) kemudian digunakan untuk mengukur produksi 262Lr di saluran p3n. Isotop ini berhasil dideteksi dan hasil 240 pb diukur. Hasilnya lebih rendah dari yang diperkirakan dibandingkan dengan saluran p4n. Namun, hasilnya dinilai untuk menunjukkan bahwa 261Lr kemungkinan besar diproduksi oleh saluran p3n dan batas atas 14% untuk cabang penangkapan elektron 261mRf disarankan.

246Cm(14N,xn)260−xLr (x=3?)

Reaksi ini dipelajari secara singkat pada tahun 1958 di LBNL menggunakan target 244Cm yang diperkaya (5% 246Cm). Mereka mengamati aktivitas alfa ~9 MeV dengan waktu paruh ~0,25 detik. Hasil selanjutnya memperkirakan penempatan tentatif ke 257Lr dari saluran 3n.

244Cm(14N,xn)258−xLr

Reaksi ini dipelajari secara singkat pada tahun 1958 di LBNL menggunakan target 244Cm yang diperkaya (5% 246Cm). Mereka mengamati aktivitas alfa ~9 MeV dengan waktu paruh ~0,25 detik. Hasil selanjutnya memperkirakan penempatan tentatif ke 257Lr dari saluran 3n dengan komponen 246Cm. Tidak ada aktivitas yang ditempatkan untuk bereaksi dengan komponen 244Cm yang telah dilaporkan.

249Bk(18O,αxn)263−xLr (x=3)

Reaksi ini dipelajari pada tahun 1971 oleh tim di LBNL dalam studi besar mereka tentang isotop lawrensium. Mereka mampu mendeteksi aktivitas yang ditempatkan ke 260Lr. Reaksi ini dipelajari lebih lanjut pada tahun 1988 untuk mempelajari kimia berair dari lawrensium. Sebanyak 23 peluruhan alfa diukur untuk 260Lr, dengan energi rata-rata 8,03 MeV dan peningkatan waktu paruh 2,7 menit. Penampang yang dihitung adalah 8,7 nb.

252Cf(11B,xn)263−xLr (x=5,7??)

Reaksi ini pertama kali dipelajari pada tahun 1961 di Universitas California oleh Albert Ghiorso dengan menggunakan target kalifornium (52% 252Cf). Mereka mengamati tiga aktivitas alfa 8,6, 8,4 dan 8,2 MeV, dengan waktu paruh masing-masing sekitar 8 dan 15 detik. Aktivitas 8,6 MeV sementara ditempatkan ke 257Lr. Hasil selanjutnya menyarankan penempatan kembali ke 258Lr, yang dihasilkan dari saluran keluar 5n. Aktivitas 8,4 MeV juga ditempatkan ke 257Lr. Hasil selanjutnya menyarankan penempatan kembali ke 256Lr. Hal ini kemungkinan besar dari komponen 250Cf 33% di target daripada dari saluran 7n. 8,2 MeV kemudian dikaitkan dengan nobelium.

252Cf(10B,xn)262−xLr (x=4,6)

Reaksi ini pertama kali dipelajari pada tahun 1961 di Universitas California oleh Albert Ghiorso dengan menggunakan target kalifornium (52% 252Cf). Mereka mengamati tiga aktivitas alfa 8,6, 8,4 dan 8,2 MeV, dengan waktu paruh masing-masing sekitar 8 dan 15 detik. Aktivitas 8,6 MeV sementara ditempatkan ke 257Lr. Hasil selanjutnya menyarankan penempatan kembali ke 258Lr. Aktivitas 8,4 MeV juga ditempatkan ke 257Lr. Hasil selanjutnya menyarankan penempatan kembali ke 256Lr. 8,2 MeV kemudian dikaitkan dengan nobelium.

250Cf(14N,αxn)260−xLr (x=3)

Reaksi ini dipelajari pada tahun 1971 di LBNL. Mereka mampu mengidentifikasi aktivitas alfa 0,7 detik dengan dua garis alfa pada 8,87 dan 8,82 MeV. Reaksi ini ditempatkan ke 257Lr.

249Cf(11B,xn)260−xLr (x=4)

Reaksi ini pertama kali dipelajari pada tahun 1970 di LBNL dalam upaya untuk mempelajari kimia berair dari lawrensium. Mereka mampu mengukur aktivitas Lr3+. Reaksi ini diulangi pada tahun 1976 di Oak Ridge dan waktu paruh 26 detik 256Lr was dikonfirmasi dengan pengukuran sinar-X yang bertepatan.

249Cf(12C,pxn)260−xLr (x=2)

Reaksi ini dipelajari pada tahun 1971 oleh tim di LBNL. Mereka dapat mendeteksi aktivitas yang ditetapkan ke 258Lr dari saluran p2n.

249Cf(15N,αxn)260−xLr (x=2,3)

Reaksi ini dipelajari pada tahun 1971 oleh tim di LBNL. Mereka mampu mendeteksi aktivitas yang ditetapkan ke 258Lr dan 257Lr dari saluran α2n dan α3n. Reaksi ini diulangi pada tahun 1976 di Oak Ridge dan penyintesisan 258Lr dikonfirmasi.

254Es + 22Ne – transfer

Reaksi ini dipelajari pada tahun 1987 di LLNL. Mereka mampu mendeteksi aktivitas fisi spontan (spontaneous fission, SF) baru yang ditempatkan ke 261Lr dan 262Lr, yang dihasilkan dari transfer dari inti 22Ne ke target 254Es. Selain itu, aktivitas SF 5 ms terdeteksi dalam kebetulan tertunda dengan sinar-X kulit-K nobelium dan ditetapkan ke 262No, yang dihasilkan dari penangkapan elektron 262Lr.

Produk peluruhan

Isotop lawrensium juga telah diidentifikasi dalam peluruhan unsur yang lebih berat. Pengamatan sampai saat ini dirangkum dalam tabel di bawah ini:

Daftar isotop lawrensium yang dihasilkan sebagai produk peluruhan inti lainnya
Nuklida induk Isotop lawrensium yang teramati
294Ts, 290Mc, 286Nh, 282Rg, 278Mt, 274Bh, 270Db 266Lr
288Mc, 284Nh, 280Rg, 276Mt, 272Bh, 268Db 264Lr
267Bh, 263Db 259Lr
278Nh, 274Rg, 270Mt, 266Bh, 262Db 258Lr
261Db 257Lr
272Rg, 268Mt, 264Bh, 260Db 256Lr
259Db 255Lr
266Mt, 262Bh, 258Db 254Lr
261Bh, 257Dbg,m 253Lrg,m
260Bh, 256Db 252Lr
255Db 251Lr

Isotop

Ringkasan semua isotop lawrensium yang diketahui
Isotop Tahun ditemukan Reaksi penemuan
251Lr 2005 209Bi(48Ti,2n)
252Lr 2001 209Bi(50Ti,3n)
253Lrg 1985 209Bi(50Ti,2n)
253Lrm 2001 209Bi(50Ti,2n)
254Lr 1985 209Bi(50Ti,n)
255Lr 1970 243Am(16O,4n)
256Lr 1961? 1965? 1968? 1971 252Cf(10B,6n)
257Lr 1958? 1971 249Cf(15N,α3n)
258Lr 1961? 1971 249Cf(15N,α2n)
259Lr 1971 248Cm(15N,4n)
260Lr 1971 248Cm(15N,3n)
261Lr 1987 254Es + 22Ne
262Lr 1987 254Es + 22Ne
264Lr 2020 243Am(48Ca,6α3n)
266Lr 2014 249Bk(48Ca,7α3n)

Empat belas isotop lawrensium ditambah satu isomer telah disintesis, dengan 266Lr menjadi yang paling lama hidup dan terberat, dengan waktu paruh 11 jam. 251Lr adalah isotop lawrensium paling ringan yang pernah diproduksi hingga saat ini.

Isomer lawrensium-253

Sebuah studi tentang sifat peluruhan 257Db (lihat dubnium) pada tahun 2001 oleh Hessberger dkk. di GSI memberikan beberapa data untuk peluruhan 253Lr. Analisis data menunjukkan populasi dua tingkat isomer di 253Lr dari peluruhan isomer yang sesuai di 257Db. Keadaan dasar ditetapkan pada spin dan paritas 7/2−, meluruh dengan emisi partikel alfa 8794 keV dengan waktu paruh 0,57 detik. Tingkat isomerik ditetapkan pada spin dan paritas 1/2−, meluruh dengan emisi partikel alfa 8722 keV dengan waktu paruh 1,49 detik.

Isomer lawrensium-255

Pekerjaan terbaru pada spektroskopi 255Lr yang terbentuk dalam reaksi 209Bi(48Ca,2n)255Lr telah memberikan bukti untuk tingkat isomer.

Referensi

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!