Մեկ փոփոխականի քառակուսային ֆունկցիա

ֆունկցիայի գրաֆիկ

Քառակուսային ֆունկցիա, երկրորդ աստիճանի ամբողջ ռացիոնալ ֆունկցիա։ հավասարումը քառակուսային ֆունկցիա է և պարունակում է քառակուսի եռանդամ, որտեղ և ։ Քառակուսային ֆունկցիայի գրաֆիկը պարաբոլ է։ Քառակուսային ֆունկցիայի շատ հատկություններ կապված են պարաբոլի գագաթի հետ, որը որոշում է գրաֆիկի դիրքը և տեսքը։

Հիմնական հատկություններ

Քառակուսային ֆունկցիայի շատ հատկություններ կախված են գործակցի արժեքից։ Հետևյալ աղյուսակը ամփոփում է քառակուսի ֆունկցիայի հիմնական հատկությունները[1]։

Հատկություն
Ֆունկցիայի որոշման տիրույթ
Ֆունկցիայի արժեքների տիրույթ
Ֆունկցիայի զույգությունը Զույգ է դեպքում, կենտ է դեպքում
Ֆունկցիայի պարբերականությունը Ոչ պարբերական ֆունկցիա
Ֆունկցիայի անընդհատությունը Անընդհատ է, խզման կետեր չկան
Ֆունկցիայի զրոները , եթե իրական զրոներ չկան, եթե
Ֆունկցիայի սահմանը դեպքում , դեպքում , դեպքում
Ֆունկցիայի դիֆերենցելիություն Ամենուր բազմակի դիֆերենցելի է
Էքստրեմումի կետերը (բացարջակ էքստրեմում) (մինիմում) (մաքսիմում)
Խիստ մոնոտոնության միջակայքերը նվազում է աճում է աճում է նվազում է
Ֆունկցիայի ուռուցիկությունը Ամենուրեք գոգավոր ֆունկցիա Ամենուրեք ուռուցիկ ֆունկցիա
Ճկման կետ Ճկման կետերը բցակայում են
Ֆունկցիայի սահմանափակումները Սահմանափակ ներքևից Սահմանափակ վերևից
Ֆունկցիայի առավելագույն արժեքը Բացակայում է
Ֆունկցիայի նվազագույն արժեքը Բացակայում է
Ֆունկցիայի դրական արժեքները
Ֆունկցիայի բացասական արժեքները

Գործակիցների ազդեցությունը գրաֆիկի ձևափոխության վրա

Քառակուսյին ֆունկցիայի գրառման ստանդարտ ձև

Влияние коэффициентов '"`UNIQ--postMath-00000023-QINU`"', '"`UNIQ--postMath-00000024-QINU`"' и '"`UNIQ--postMath-00000025-QINU`"' на параболу

, и իրական թվերը քառակուսի ֆունկցիայի ընդհանուր արձանագրման մեջ կոչվում են նրա գործակիցներ։ Այս դեպքում a գործակիցը ընդունված է անվանել ավագ, իսկ c գործակիցը՝ ազատ։ Յուրաքանչյուր գործակցի փոփոխությունը հանգեցնում է պարաբոլի որոշակի փոխակերպումների։

a գործակցի արժեքով կարելի է դատել այն մասին, թե որ ուղղությամբ են ուղղված նրա ճյուղերը (վեր կամ վար) և գնահատել դրա ձգման կամ սեղմման աստիճանը օրդինատների առանցքի նկատմամբ։

Եթե , ապա պարաբոլի ճյուղերը ուղղված են դեպի վեր, այսինքն, նրա գագաթը գտնվում է ներքևում։

Եթե , ապա պարաբոլի ճյուղերը ուղղված են ներքև, այսինքն, նրա գագաթը գտնվում է վերևում։

Եթե , ապա պարաբոլը սեղմվում է օրդինատների առանցքի վրա, այսինքն, կարծես ավելիկ այն է և հարթ։

Եթե , ապա պարաբոլը ձգվել է օրդինատների առանցքի վրա, այսինքն, կարծես ավելի նեղ է և կտրուկ։

a գործակցի արժեքի ազդեցությունը առավել պարզապես թույլ է տալիս ցույց պատկերացնել ֆունկցիայի տեսքը կախված գործակցի արժեքից, այսինքն, այն դեպքում, երբ b=0 և C=0, ապա։ Այն դեպքում, երբ քառակուսի ֆունկցիան վերածվում է գծայինի։

c գործակիցը բնութագրում է պարաբոլայի զուգահեռ տեղափոխությունը օրդինատների առանցքի նկատմամբ (այսինքն՝ վեր կամ վար)։ Այս գործակցի արժեքը 1-ով բարձրացնելու դեպքում գրաֆիկը տեղափոխում է 1-ով։ Համապատասխանաբար, եթե դուք նվազեցնել գործակիցը պարաբոլը կտեղափոխվի ներքև։ Քանի որ, գործակիցը նույնպես ազդում է պարաբոլայի վերին դիրքի վրա, ապա միայն c գործակցի արժեքից չի կարելի դատել այն մասին, թե արդյոք գագաթը գտնվում է աբսցիսների առանցքից բարձր կամ ցածր։

Ցանկացած տեսքի քառակուսային ֆունկցիայի ձևափոխումը տեսքի, թույլ է տալիս օգտվել երկանդամների կրճատ բազմապատկման բանաձևերից։

, где и

Ֆունկցիայի զրոներ

Քառակուսային ֆունկցիան երկրորդ աստիճանի ամբողջ ռացիոնալ ֆունկցիա է, ուստի այն կարող է ունենալ ոչ ավելի, քան երկու զրոներ իրական տիրույթում։

Առանց համապատասխան քառակուսի հավասարման լուծման, քառակուսային ֆունկցիայի զրոները որոշելը հնարավոր է դիսկրիմինանտի հաշվման միջոցով։

Լրիվ դիսկրիմինանտ (որոշիչ) Կրճատ դիսկրիմինանտ Բերված դիսկրիմինանտ

Անկախ դիսկրիմինանտի որոշմանձևից ճիշտ են հետևյալ պնդումները․

  • Եթե , ապա պարաբոլի գագաթի աբսցիսը կլինի ֆունկցիայի միակ զրոն։
  • Եթե , ապա ֆունկցիան ունի աբսցիսների առանցքի հետ երկու հատման կետ,այսինքն երկու զրո։
  • Եթե , ապա ֆունկցիան զրոներ չունի, քանի որ գրաֆիկը չի հատվում աբսցիսների առանցքի հետ։
  • Օրինակ, ֆունկցիայի համար՝
.

Սա նշանակում է,որ տվյալ ֆունկցիան ունի երկու իրական զրոներ։

Դրսևորումներ գործնականում

Տես նաև

  • Քառակուսային եռանդամ
  • Պարաբոլ

Ծանոթագրություն

  1. Квадратичная функция // Большая школьная энциклопедия. — М. : «Русское энциклопедическое товарищество», 2004. — С. 118—119.

Գրականություն

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!