Ez a szócikk vagy szakasz lektorálásra, tartalmi javításokra szorul. A felmerült kifogásokat a szócikk vitalapja részletezi (vagy extrém esetben a szócikk szövegében elhelyezett, kikommentelt szövegrészek). Ha nincs indoklás a vitalapon (vagy szerkesztési módban a szövegközben), bátran távolítsd el a sablont! Csak akkor tedd a lap tetejére ezt a sablont, ha az egész cikk megszövegezése hibás. Ha nem, az adott szakaszba tedd, így segítve a lektorok munkáját!
Szigetelőnek(vagy dielektrikumnak) nevezzük azokat az anyagokat, melyek az elektromos áramot elhanyagolható mértékben vezetik. Az elektromos ellenállásuk jellemzően 1012 Ω felett van. A szigetelőkben a tiltott sáv szélessége nagy, nagyobb mint 3 eV (kb. 0,5 aJ), amelyet szobahőmérsékleten csak nagyon kevés elektron képes megszerezni. A szigetelő anyagokban ezért kevés szabad elektron van, az anyag vezetőképessége kicsi. Gyakorlatilag nem vezet, szigetel. Ideális szigetelőben egyetlen szabad töltéshordozó sincs. Az atomok hőmozgása miatt a gyakorlatban ilyen nem fordul elő, vagyis szigetelő anyagainkra inkább rossz vezető elnevezést kellene használni. A szigetelő anyagok a gázok, az olajok, a szilárd halmazállapotúak közül az üveg, műanyagok, kerámiák, csillám stb. A desztillált víz is inkább szigetelő, míg a különböző sókat tartalmazó víz már vezető.
A jelenségkör szorosan összefügg az anyagok elektromos és mágneses energiát tároló képességével. Ennek egyik mennyisége a χeelektromos szuszceptibilitás (vagy más néven dielektromos szuszceptibilitás), amely azt méri, hogy a szigetelő mennyire polarizálódik külső elektromos tér hatására. Ez a mennyiség összefüggésben áll azzal is, hogy milyen a fény terjedési sebessége a közegben.
A jó dielektrikum poláros molekulái a külső elektromos tér rákapcsolásakor az erőtér irányába állnak be. Ez a dielektromos polarizáció jelensége, ami növeli a kondenzátor kapacitását.
Az elektrotechnikában a szigetelőket az áram szivárgásának megakadályozására és a vezetők megtámasztására használják.
A dielektrikumokra jellemző mennyiségek a permittivitás, a veszteségi szög és az átütési feszültség. Az iparban alkalmazott dielektrikumok nagyon magas átütési feszültségű, nagy szakítószilárdságú, vegyileg stabil, kúszóárammal szemben ellenálló anyagok.
Permittivitás
A síkkondenzátor kapacitása egyenesen arányos a benne levő dielektrikum permittivitásával:
ahol C a kapacitás, εr a dielektrikum relatív permittivitása, a vákuum permittivitása, A a fegyverzetek felülete, és d a fegyverzetek közötti távolság.
Néhány anyag relatív permittivitása:
paraffin
1,9 - 2,2
csillám
4 - 8
üveg
5 - 16
porcelán
6 - 8
speciális kerámiák
~ 100
bárium-titanát
~ 1000
víz
81
etil-alkohol
24
petróleum
2,1
levegő
1,000 59
neoprén
6,7
papír
3,7
kvarc
4,3
stroncium-titanát
300
réz-oxid
18
titán-dioxid
~ 80
CaTiO3
~ 160
(SrBi)TiO3
~ 1000
benzol
~ 2,3
nitrobenzol
37
hidrogén
1,000264
kén-dioxid
1,0099
A levegő relatív permittivitását a legtöbb számításban egynek veszik, mivel maga a számítás sokkal pontatlanabb. A víz kiugróan magas permittivitása a vízmolekula erős polározottságának, és ebből következő nagy dipólusnyomatékának köszönhető.
Veszteségi szög
A dielektromos veszteségi tényezőnek is nevezett veszteségi szög a D dielektrikus eltolás és az E erőtér által bezárt szög. Kiszámítása:
Az átütési feszültség az a feszültség, aminél a dielektrikum vezetővé válik. Az eközben végbement kémiai reakciók miatt a szilárd dielektrikumot ki kell dobni, mivel ez a folyamat visszafordíthatatlan. A folyékony és a gáz halmazállapotú dielektrikumokban az áramlás visszaállítja a szigetelőképességet, bár a kémiai reakciók termékei az anyagban maradnak. Ez a feszültség egyenesen arányos a dielektrikum vastagságával, ezért V/m-ben mérik. Gyakorlati okok miatt azonban inkább a MV/cm mértékegységet használják.
Táblázat a dielektrikumok átütési feszültségéről. Az adatok MV/cm-ben értendők.