הרכבו הכימי של הכוכב העתיד להיווצר מקדם-כוכב מושפע בצורה ניכרת מהצפיפות ומהטמפרטורה של ענן הגז, הקורס לקדם-כוכב[1]. מסלול התפתחותו תלוי במסה הראשונית של קדם-הכוכב ממנו הוא נוצר.
לאחר סיום השלב השני (או השלישי בכוכבים קלים), בליבת קדם-הכוכב מתחילות תגובות היתוך גרעיני, שהן המנגנון האחראי על מרבית האנרגיה שמפיק הכוכב. זהו הרגע בו קדם-הכוכב הופך לכוכב הלכה למעשה. המונח "קדם-כוכב" משמש לתיאור גרם שמים הנמצא בכל אחד מן שלושת השלבים המתוארים, אך על פי רוב מתייחס לשלב השני.
כאשר קדם-כוכבים מוקפים בענן אבק, החוסם ומפזר אור נראה, הצפייה בהם אפשרית בטווח האינפרה-אדום של הספקטרום האלקטרומגנטי. ענן האבק, המקיף את קדם הכוכב, עשוי להפוך במשך הזמן לדיסקה קדם-פלנטרית (Protoplanetary disc); החומר ממנו תיווצר מערכת כוכבי לכת. פרק הזמן הנדרש לשם התפתחותו של קדם-כוכב לכוכב תלוי במסתו (עבור כוכב עם מסה הקרובה למסת שמש אחת, שלב קדם-כוכב נמשך כ-100,000 שנים).
רקע היסטורי
המונח "קדם-כוכב" (במקור ברוסית: Протозвезда, ובהמשך באנגלית: Protostar) נהגה לראשונה על ידי האסטרופיזיקאי הסובייטיויקטור אמברצומיאן[3] והוכנס על ידו לשימוש בסוף שנות ה-40 ותחילת שנות ה-50 של המאה ה-20. במקור, תיאר המונח אובייקטים מסיביים היפותטיים שהתפרקותם מולידה כוכבים[4]. עם התפתחות המדע התברר כי כוכבים נוצרים בתהליך שונה לגמרי, אך השם נשמר.
השימוש במונח "קדם-כוכב", במובנו הנוכחי, נעשה לראשונה במאמרם של הפיזיקאים היפניים צ'ושירו הייאשי (Chushiro Hayashi) וטקאנורי נאקנו (Takenori Nakano) ב-1965[5].
הבסיס התאורטי למנגנון יצירת הכוכבים הונח על ידי צ'ושירו הייאשי ושותפיו שקבעו את תכונות של כוכבים טרום-סדרה ראשית שמאירים תוך כדי התכווצות קוואזי-סטטית[6] השומרת על מסה קבועה. כוכב טרום-סדרה ראשית במסה נמוכה יחסית ואוריות מעל ערך מסוים תואר לראשונה בדיאגרמת הרצשפרונג-ראסל על ידי לואיס הניי, רוברט לה-לווייר (Robert Le Levier) ור.ד לווי ( R. D. Levée) ב-1955. המשך המחקר הראה את חשיבותם של תהליכים תרמו-גרעיניים המוקדמים לשלב בו הכוכב הצעיר מגיע לסדרה הראשית[7].
חישוביו של הייאשי לא פסלו את האפשרות של צפיפות וטמפרטורה נמוכות מאוד לחומר ממנו בסופו של דבר הכוכב נוצר. עד מהרה נפסלה האפשרות לכך שקדם-כוכב בשלביו הראשונים יכול להיות בשיווי משקל הידרוסטטי. ב-1963 ג'ון גאוסטד( John E. Gaustad) הראה שבתווך רחב של צפיפויות וטמפרטורות הענן הקורס יאבד אנרגיה תרמית מהר מכדי לשמור על שיווי משקל מכני. מכאן הושגה ההבנה השלבים הראשונים של קדם כוכב יכולים להיות מתוארים אך ורק על ידי תהליכים דינמיים ולא סטטיים.
חישובים הידרודינמיים משנות ה-60 הראו שהקריסה הכבידתית של ענן עם תנאי התחלה הנתונים על ידי קריטריון ג'ינס תהיה מאוד לא אחידה. בשנות ה-70, ריצ'רד לארסון (Richard B. Larson) וחוקרים נוספים הגיעו להסכמה כוללת על מבנה של קדם-כוכב הכולל גרעין ומעטפת, אך פרטים אחרים נותרו שנויים במחלוקת. בשנות ה-80 נושא התפתחות הכוכבים היה נושא מחקר מאוד פעיל[8] והמנגנון העכשווי של הקריסה פותח בתקופה זו.
במקביל למחקר התאורטי, תצפיות אסטרונומיות בתחומי האינפרה-אדום (Infrared astronomy)והרדיו התקדמו בצעדי ענק וסייעו בקביעת המבנה של עננים מולקולריים מהם נוצרים כוכבים- הן בסקלות של ענן מולקולרי כולו והן בסקלות של אזור מבודד הקורס לכוכב יחיד[9]. בשנות ה-90 פותחה שיטה לצפות בדיסקות קדם-פלנטריות ולמדוד את המהירות הזוויתית של הקדם כוכב. טלסקופ החלל האבל ששוגר ב-1990 סיפק מידע רחב מאוד על היווצרות הכוכבים וצילומיו שימשו את המדע גם בתחילת המאה ה-21. ב-2003 שוגר טלסקופ החלל שפיצר המצלם בתחום האינפרה-אדום. טלסקופ זה סיפק תצפיות נדירות של קדם-כוכבים שהיו מוסתרים על ידי עננים בלתי חדירים באור נראה ובכך איששו מנגנונים תאורטיים רבים[10].
לידתו של כוכב מתחילה מענן מולקולרי גדול, מסדר גדול של מספר פרסקים. עננים אלו הם הצטברות דלילה של מימן אטומרי (כלומר מולקולות חד-אטומיות), מימן מולקולרי (כלומר מולקולות ), הליום ואחזור קטן של מתכות. כתוצאה מאינטראקציה כבידתית של הענן עם עצמים שכנים נוצרות בענן הפרעות הגורמות לעליית הצפיפות המקומית של הגז באזורים שונים. גורמים נוספים להפרעות בצפיפות הענן הם גלי הלם של נובות וסופרנובות קרובות, רוח כוכבית של כוכב שכן, התנגשות בין גלקסיות או אינטראקציה כבידתית בין הענן לגל צפיפות בזרוע לוליינית של הגלקסיה.
בשלב הבא מתחיל תהליך הקרוי קריסה כבידתית. עבור הפרעות חזקות מספיק, הכבידה העצמית של האזור בעל הצפיפות המוגברת תגרום לעלייה נוספת בצפיפות כתוצאה מן המשיכה הכבידתית שבין חלקיקי הגז. עלייה זו בצפיפות תגרום לעליית הטמפרטורה ועל כן לעלייה בלחץ. אם הגידול בצפיפות מהיר מספיק, הענן אינו יכול להגיע למצב של שיווי משקל הידרוסטטי בין לחץ הגז לבין הכבידה העצמית. העלייה בצפיפות לא נבלמת והענן מצוי למעשה בשלב של קריסה כוללת. הימצאותו של אבק בגז עוזרת לתהליך ההתגבשות בכך שהוא משמש כזרז לתהליך היווצרות המולקולות (וגז מולקולרי יותר צפוף מגז אטומרי). בנוסף, האבק בולע חלק מהקרינה האולטרה-סגולה שמסוגל לפרק מולקולות בעננים מולקולריים ובכך משמר אותם[11].
כאשר הצפיפות מגיעה לערך קריטי מסוים, הענן נעשה בלתי יציב כבידתית ומתפרק לחלקים קטנים יותר, הניתקים זה מזה. חלקי ענן אלו, מתהווים סביב אזורי הצפיפות הגבוהה של הענן המקורי וממשיכים להתכווץ בלא תלות זה בזה. תהליך הִתְעַבּוּת זה יכול להתרחש במספר שלבים, בהם עננים קטנים יותר מתאחדים חזרה לעננים גדולים יותר או מתחילים לנוע סביב מרכז כובד משותף, מצב העשוי להביא בהמשך להתפתחות צביר כוכבים, מערכת מרובת כוכבים או כוכבים זוגיים. מספר הכוכבים בצביר מושפע מגודלו של חלק הענן הקורס. תצפיות מראות שרק 1-2 אחוז מחומר המרכיב את הענן המולקולרי המקורי קורס לכוכבים. שארית החומר מצטברת סביב הכוכב המתהווה בתצורה של מעטפת אטימה אופטית.
בשלב הבא ענני המשנה עצמם עוברים תהליך נוסף של התעבות וקריסה. בשלב זה לא ניכרים עדיין מאפיינים של כוכב והענן מופיע בעיקר כמקור של קרינה בתחום התת-אדום עם אורך גל של מעל 1000 ננומטר (1 מיקרון). קריסה נוספת זו של ענני המשנה מתרחשת רק כאשר צפיפות החלקיקים מגיעה לסדר גודל של חלקיקים לסמ"ק בטמפרטורה של כ-10 מעלות קלווין. חשוב לציין שהרכב ענן המשנה מכיל עתה גם אבק המפזר את קרינת האור הנראה והופך אותו לאפל בתחום זה.
התכווצות איזותרמית
בתנאים רגילים, התכווצותו של ענן גורמת לעלייה בטמפרטורה ובלחץ הפנימי שלו[12], כאשר הלחץ הפנימי הנוצר מפעיל כוח בכיוון מנוגד לזה של הכבידה ובכך מאזן אותה ובולם את הכיווץ. בענן מולקולרי, לעומת זאת, קיים מנגנון קירור קוונטי: ההתנגשויות בין מולקולות המימן גורמות לעלייה ברמות האנרגיה וכתוצאה מכך לפליטה של פוטונים באורך גל של 28 מיקרון. קרינה זו נפלטת אל מחוץ לענן ומורידה בצורה אפקטיבית את הטמפרטורה שלו. במילים אחרות, האנרגיה המשתחררת כתוצאה מכיווץ הענן לא הופכת לאנרגיה תרמית, כבמקרה של גז אידיאלי, ואינה מחממת את הענן, וההתכווצות מתרחשת בתהליך איזותרמי - השומר על טמפרטורה קבועה. פליטת הקרינה במהלך התכווצות ענן לקדם-כוכב מאפשרות לצפות בשלב זה, באמצעות גלאי אור הרגישים לקרינה בעלת אורך גל של מעל 1 מיקרון.
מכיוון שהתכווצות היא איזותרמית, הלחץ בענן עולה בקצב איטי משמעותית ביחס לכוחות הכבידה, ובסופו של דבר, תקופה קצרה אחר תחילת הקריסה, הכוח שמפעיל לחץ הגז הופך לזניח ביחס לכבידה. משמעות הדבר היא שהכיווץ המתרחש מהווה בקירוב נפילה חופשית למרכז המסה של הענן.
עבור ענן במסת שמש אחת ובקוטר של 0.02 פרסק, זמן כיווץ אופייני הוא כ-200,000 שנים[13].
היווצרותו של גרעין צפוף
עם המשכת תהליך התכווצות הענן, צפיפותו הופכת פחות ופחות אחידה, כאשר צפיפות המסה עולה יותר ויותר ככל שמתקרבים למרכז הגאומטרי של הענן. כתוצאה מהצפיפות הגבוהה במרכז הענן, אזור זה מפסיק להיות שקוף לקרינה אינפרה אדומה והפוטונים של קרינה זו אינם יכולים לצאת מחוץ לענן ולקרר אותו, כפי שהיה קודם. הטמפרטורה בו מתחילה לעלות בקצב דרמטי, עד ליצירת שיווי משקל הידרוסטטי, בו לחץ הנוצר בגלל התחממות מצליח להתגבר על הכבידה העצמית.
שימור תנע זוויתי גורם לכך ששאריות הענן החג סביב הגרעין תתכווץ לצורה דמוית דיסקה שטוחה. דיסקה זו קרויה דיסקה קדם-פלנטרית או "proplyd".
עבור ענן במסת שמש אחת, צפויה בשלב זה התעבות של גרעין בעל מסה של כ, רדיוס של כ[14] וטמפרטורה של כ . כלומר, בשלב זה הגרעין עצמו הוא רחב, דליל מאוד וקר מאוד יחסית לגרעיני גרמי שמיים.
ספיחה של מעטפת רחבה על פני הגרעין
אחר היווצרות הגרעין, המעטפת החיצונית של קדם-הכוכב ממשיכה בנפילתה החופשית אל כיוון מרכז הכובד ומתנגשת בגרעין במהירות של כ-. כתוצאה מהתנגשות זו נוצר גל הדף וטמפרטורת הגרעין עולה.
בהמשך, הכיווץ האיטי של קדם-הכוכב ממשיך לחמם אותו, מכיוון שמנגנון הקירור הקוונטי כבר אינו יעיל. כיווץ הגרעין נמשך עד להגעה לטמפרטורה של 2000K - טמפרטורה בה מתחיל פירוק קשרי המימן המולקולרי ובעקבותיו היינון של האטומים. תהליכים אלו, הדורשים אנרגיה רבה וצורכים אנרגיה תרמית, עוצרים את עליית טמפרטורת הגרעין. כתוצאה משינויים אלו, גרעין הקדם-כוכב יוצא משיווי משקל ומתחיל להתכווץ במהירות ולהתחמם. הליך זה נמשך עד להגעה לשיווי משקל חדש, ותוצאתו הוא גרעין חדש - פלזמטי ולא גזי כשהיה לפני כן.
עבור הפרמטרים שצוינו קודם - ענן בעל מסת שמש אחת - מתקבל גרעין בעל מסה של , רדיוס של כ- וטמפרטורה של , כלומר גרעין צפוף וחם. התחממות הקדם-כוכב בשלב זה מאטה בצורה ניכרת את מהירות התכווצות המעטפת, אך מהירות הנפילה של החומר אל הגרעין עולה אף היא ומוערכת בסדרי גדול של . הטמפרטורה בליבת הקדם-כוכב ממשיכה לעלות והקרנתה לא מספיקה לסלק את האנרגיה החוצה מן הליבה. בשלב זה הסעת חום (קונבקציה) הופכת למשמעותית, והחומר בליבת הקדם-כוכב מתחיל לנוע מאזור המרכז החם יותר לעבר פני הקדם-כוכב, בהם הלחץ נמוך משמעותית. מאחר שמהירות התנועה של האזורים החמים גבוהה בהרבה ממהירות הולכת החום, אזורים אלו מתרחבים בעת העלייה בתהליך אדיאבטי[15] למדי - כלומר, כמעט בלא העברת חום לסביבה. במנגנון זה, הליכי התפלגות הטמפרטורה, הלחץ והצפיפות כולם אדיאבטיים בקירוב.
שלב ספיחת המעטפת בקדם-כוכב מתאפיין בין היתר בירידת צפיפות הענן עם ההתרחקות מן המרכז. הכבידה משחקת תפקיד מרכזי בהתרחשות זו, מאחר שהכיווץ נעשה בנפילה חופשית בקירוב. הזמן האופייני לנפילה חופשית, , עולה עם הירידה בצפיפות, ולכן האזורים הפנימיים מתכווצים מהר יותר מהאזורים החיצוניים. כתוצאה מכך, פילוג הצפיפות הולך ונהיה פחות ופחות אחיד עם הזמן.
תהליך זה נמשך עד שכל המעטפת מסופחת לגרעין.
עבור ענן במסת שמש אחת, וצפיפות התחלתית של כ- (כלומר, צפיפות המתאימה לאי יציבות ג'ינס), משך התהליך מוערך בכמיליון שנים[16] - כלומר, פי 3 עד 5 מזמן הנפילה החופשית -, ורדיוס הכוכב הצעיר שייווצר הוא כ-2 רדיוסי שמש. במקרה בו הצפיפות ההתחלתית גבוהה יותר, זמן הקריסה יתקצר ורדיוס הכוכב הצעיר יגדל.
גרם שמיים בשלב זה מקרין אור נראה בעצמה גבוהה ונראה לצופה מכדור הארץ כמו כוכב. ההבדל המרכזי בין קדם-כוכב בשלב זה לכוכב סדרה ראשית הוא שבליבת הקדם-כוכב לא מתרחשים תהליכי היתוך גרעיניים (כדוגמת שרשרת פרוטון-פרוטון), כי הטמפרטורה בו נמוכה מדי ועומדת על כ- .
תחשיבי נתונים מצביעים על כך[17] שבשלב הקונבקציה הטמפרטורה של הקדם-כוכב תלויה באופן מועט במסה, וכמעט שאינה תלויה באוֹרִיּוּת (Luminosity): . משמעות הדבר היא שעם ירידת הרדיוס, יורדת האוריות של הכוכב. בדיאגרמת הרצשפרונג-ראסל כוכבים צעירים כאלה מופיעים "מעל" הסדרה הראשית ו"יורדים" אליה עם הזמן. מסלול התפתחות זה מכונה "מסלול הייאשי".
כוכבים בעלי מסה קטנה מ-0.3 מסות שמש ממשיכים להיות קונבקטיביים בשלמות - כלומר, הסעת החום בהם מתרחשת לאורך כל הכוכב, גם כשמגיעים לסדרה הראשית. בכוכבים קלים, אך בעלי מסה הגדולה מ-0.3, נוצרת ליבה בה האנרגיה מועברת על ידי פליטת קרינה, דבר המעלה את טמפרטורת פני השטח. מסלול התפתחות זה מכונה "מסלול הניי" (אנגלית: Henyey track).
עבור מסת ליבה העולה על 3 מסות שמש, תגובות גרעיניות יחלו לפני ספיחת הקליפה האטומה כולה. גופים כאלה נצפו בגלאי אור אינפרה אדום ונראים כאזורי מימן מיונן המוקפים בענן קר.
לא כל הקדם-כוכבים עתידים להפוך לכוכבים. אם מסת קדם-כוכב קטנה מ-0.075 מסות שמש, הכיווץ שלו ייבלם על ידי לחץ הניוון של אלקטרוני הגז (לחץ הנובע מעקרון האיסור של פאולי) ולא ייווצרו התנאים הנדרשים להיתוך מימן. קדם-כוכב כזה יהפוך לננס חום.
התכווצות קלווין-הלמהולץ
בקדם-כוכב בעל מסה הקטנה מ-3 מסות שמש, תהליך ההתכווצות יימשך עד שהטמפרטורה בליבה תעלה לטמפרטורה המספיקה להתרחשות תגובות תרמו-גרעיניות (בסביבות 3 מיליון מעלות קלווין). התכווצות זו אטית בהרבה מזו המאפיינת את השלבים קודמים: עבור כוכב במסת שמש אחת הליך זה מוערך בכ- שנים. עבור ננסים אדומים בעלי מסה נמוכה יותר, שלב זה יכול לקחת מיליארדי שנים - כלומר, משך זמן מסדר גיל היקום.
כוכבים בשלב זה נראים באור נראה מכדור הארץ ולכן נצפו הרבה לפני פיתוח המודל המודרני של קדם-כוכב. מחלקה זו של גרמי שמיים נקראת כוכבי T בשור, על שם הכוכב הראשון מסוג זה שהתגלה - T בקבוצת שור (Taurus). כוכבים אלו הם קרים, ובהירותם משתנה באופן מהיר. שינויים אלו נובעים מתהליכי קונבקציה סוערים בתוך הכוכב. אחד המאפיינים הבולטים של כוכב כזה הוא קו בליעה של ליתיום, שריכוזו גבוה בהרבה מריכוז הליתיום בשמש, דבר המעיד על כך שתהליכי ההיתוך בהם "נשרפים" יסודות קלים (כלומר תהליכי נוקליאוסינתזה של פחמן ויסודות כבדים יותר) טרם החלו. מקור האנרגיה העיקרי שלהם הוא קריסה כבידתית, ולא היתוך גרעיני כמו בכוכבי סדרה ראשית.
בדיאגרמת הרצשפרונג-ראסל כוכבים צעירים אלו ממוקמים מעל הסדרה הראשית. הם נצפים בקבוצות הנקראות "T-associations" החופפות לעיתים את קבוצות "O Associations"[18]. בקבוצות מסוג זה נראים לעיתים קרובות גם ענני אבק וכוכבים צעירים מסוגים A ו-B (בשלב כוכבי הרביג Ae/Be).
סילון קדם-כוכבי
כאשר קדם-כוכב צעיר חג סביב עצמו, אחת התוצאות היא פליטה של סילוני גז מולקולרימיונן מקוטבי הקדם-כוכב, המושלכים למרחקים גדולים. סילונים אלו נקראים סילונים קדם-כוכביים (Protostellar Jets). פליטות אלו, הנצפות בקלות יחסית בשל גודלם, מעידות על צעירותו של גרם שמים. המנגנון המדויק של סילונים אלו, של האצתם וכוונתם, טרם פוענח.
סילונים כאלו, היכולים להגיע למרחקים של שנות אור, נצפו רבות באובייקטי הרביג-הרו (אנגלית: Herbig–Haro object). נצפו גם מקרים בהם חומר עזב את הכוכב הצעיר במהירויות של מאות קילומטרים בשנייה. בעשרה מקרים שונים, בנוסף לחומר היוצא, נצפתה גם קרינת רנטגן, דבר המצביע על כך שמהירות הסילונים היא מעל 500 קילומטרים לשנייה: על מנת להגיע למהירויות כאלה, החומר צריך לעזוב את פני הכוכב במהירות העולה על 1000 קילומטרים לשנייה, מהירות הגדולה בהרבה ממהירויות שנצפו במקרים דומים אחרים[19].
תצפיות
הצפייה באור נראה, בקדם-כוכב במרבית השלבים, אינה אפשרית לצופה מכדור הארץ[20]. גרם שמיים זה מוסתר מרבית הזמן על ידי ענן צפוף של אבק וגז, שאריות הענן המולקולרי ממנו התהווה. לעיתים ניתן להבחין בצללית של קדם כוכב על רקע אור חזק הנפלט מגז הקרוב אליו - אובייקטים המכונים "גלובולות בוק" (Bok globules)[21]. עם זאת, שלבים מוקדמים בחיי כוכב ניתנים לצפייה באור אינפרה-אדום בלבד, החודר אבק. מסיבה זו, תצפיות מטלסקופ החלל WISE, המסוגל לצלם בתחום האינפרה-אדום, היוו חלק משמעותי במיוחד בגילוי של קדם-כוכבים וצבירי הכוכבים הנוצרים מהם[22].
המבנה של ענן מולקולרי והאפקטים האופייניים לתהליכי היווצרות קדם-כוכבים מאפשרים זיהוי של קדם-כוכבים באמצעות מפות הכחדה (בליעה ופיזור) (Extinction (astronomy)) של אור אינפרה-אדום קרוב (מפות המשורטטות מתוך השוואת אומדן כמות הכוכבים ליחידת שטח, הנצפים באינפרה-אדום קרוב, לתמונת השמיים המתקבלת בצפייה באור נראה בה הללו נבלעים), ולפי ספקטרום הפליטה הרציף של אבק וקווי הספקטרום האופייניים למעברי אנרגיה קינטית זוויתית במולקולות פחמן חד-חמצני ומולקולות אחרות, הנצפים בתחום התת-מילימטרי. מאחר שלרוב, שארית הענן העוטפת קדם-כוכבים וכוכבים צעירים חוסמת את מעבר מרבית האור הנראה, הצפייה בקדם-כוכבים ובכוכבים צעירים נעשית בטווחי האינפרה-אדום. בשל כך תצפיות בקדם-כוכבים וכוכבים צעירים מכדור הארץ הן בעייתיות - אטמוספירתכדור הארץ אטומה כמעט לחלוטין לקרינה באורכי גל בין 20 ל-850 מיקרון, ולכן התצפית בקדם-כוכבים יעילה רק מטלסקופים הנמצאים מחוץ לאטמוספירה.
ניתן לצפות בצורה ישירה בהיווצרות כוכבים בודדים בגלקסיה שלנו, אך לא בגלקסיות אחרות - באלו ניתן להבחין רק לפי החותמת הספקטרלית שהם מותירים.
מסת כוכב בעת היווצרותו: מסה קטנה מאד - פחות מ־ 0.08 לערך,
מסה קטנה - בטווח 0.08 - 0.4 לערך, מסה בינונית - בטווח 0.4 - 8 לערך (לאחר הקריסה המסה קטנה, פחות מ־ 1.44 לערך), מסה גדולה - לפחות 8 לערך (לאחר הקריסה המסה היא לפחות 1.44 לערך)
^זהו זמן הנפילה החופשית, כלומר הזמן שלוקח לחלקיק היפותטי להגיע מקצה הענן למרכז המסה כאשר הכוח היחיד הפועל עליו הוא הכבידה. משך זמן זה מהווה הערכה טובה מאוד לאומדן סדרי גודל זמן הכיווץ האופייני.