מורבק כתב ב-1988, "קל יחסית לגרום למחשבים להפגין ביצועים ברמה של מבוגרים במבחני אינטליגנציה או משחק דמקה, וקשה עד בלתי אפשרי לתת להם יכולות של ילד בן שנה בכל הנוגע לתפיסה-חושית ותנועה במרחב".[1]
באופן דומה הדגיש מינסקי שהכישורים האנושיים הקשים ביותר להנדסה לאחור הם אלה שנמצאים בתת-מודע. "באופן כללי, אנחנו הכי פחות מודעים למה שהמוח שלנו עושה הכי טוב", כתב, והוסיף "אנחנו מודעים יותר לתהליכים פשוטים שלא עובדים טוב מאשר לתהליכים מורכבים שעובדים ללא רבב".[2]
עיקרון דומה הציג סטיבן פינקר כאשר כתב ב-1994 כי "הלקח העיקרי של שלושים וחמש שנות מחקר בינה מלאכותית הוא שהבעיות הקשות הן קלות והבעיות הקלות הן קשות".[3]
בשנות ה-20 של המאה ה-21, בהתאם לחוק מור, מחשבים הפכו למהירים פי מאות מיליונים מאשר בשנות ה-70, וכוח החישוב הנוסף מספיק כדי להתחיל לטפל בתפיסה ומיומנויות חושיות, כפי שחזה מורבק ב-1976.[4] בשנת 2017, הציג חוקר למידת מכונה מוביל, אנדרו נג, "כלל אצבע מאוד לא מושלם", לפיו "כמעט כל דבר שאדם ממוצע יכול לעשות בפחות משנייה של מחשבה, נוכל כנראה בעתיד הקרוב לבצע לו אוטומציה באמצעות בינה מלאכותית". [5] אך נכון ל-2017 אין הסכמה לגבי המשימות בהן AI נוטה להצטיין.[6]