פיזיקלית, שיווי משקל הידרוסטטי מקשר את גרדיאנט הפוטנציאל, את הצפיפות ואת גרדיאנט הלחץ, בעוד שמשוואת פואסון מקשרת את הפוטנציאל עם הצפיפות. ממשוואה זו עולה שמספיק לדעת את הקשר בין הלחץ והצפיפות כדי להגיע לפתרון ולהסיק משהו לגבי מבנה הכוכב. הבחירה הספציפית במודל פוליטרופי של הגז הופכת את הניסוח המתמטי של הבעיה לממצה, דבר שמוביל למשוואת ליין-אמדן. זהו פתרון "מסדר אפס" עבור כדורים גזיים בעלי כבידה עצמית, כגון כוכבים. במקרים מסוימים זהו קירוב שימושי, אך בדרך כלל בעל הנחות מגבילות למדי.
את המשוואה ניתן לפתור אנליטית רק כאשר האינדקס הפוליטרופי n שווה ל-0, 1 או 5. במקרים אחרים (כגון במקרים הפיזיקליים) יש לפתור את המשוואה נומרית.
n =
0
1
5
=
ζ1 =
∞
כאשר מייצג את רדיוס הכוכב חסר הממדים המנורמל ב-a. עבור n=1 הפתרון הוא פונקציית sinc שכן המשוואה הופכת למשוואת בסל כדורית.