השימוש הידוע הראשון במרובע סאקרי נעשה על ידי עומר ח'יאם בשלהי המאה ה-11, ועל כן לעיתים מתייחסים למרובע הזה בתור מרובע ח'יאם-סאקרי. בעבור מרובע סאקרי ABCD, הצלעות AD ו-BC (שנקראות גם הרגליים) שוות באורכן וניצבות לבסיס AB. החלק העליון CD נקרא הפסגה או הבסיס העליון והזוויות C ו-D נקראות זוויות הפסגה.
היתרון הטמון בשימוש במרובעי סאקרי בהתייחס לאקסיומת המקבילים הוא שהם מדגימים את תכונות הגאומטריות השונות בבהירות רבה. ניתן לשאול את השאלה הבאה בקשר למרובעי סאקרי:
האם זוויות הפסגה הם זוויות ישרות, חדות או קהות?
כפי שהתברר מאוחר יותר, שלוש האפשרויות השונות לזוויות אלו מתאימות למקרים הבאים:
כאשר הזוויות הללו ישרות, הקיום של מרובע כזה שקול לאקסיומת המקבילים.
סאקרי עצמו חשב שניתן להראות שהמקרים הקהים והחדים הם בעלי סתירות פנימיות. הוא אכן הראה שהמקרה הקהה הוא בעל סתירה פנימית, אבל נכשל לטפל בצורה נכונה במקרה החד.
היסטוריה
למרובעי סאקרי התייחס לראשונה עומר ח'יאם (1048–1131) בשלהי המאה ה-11 בספר הראשון של חיבורו "הסבר לקשיים הטמונים בפוסטולטים של אוקלידס". בשונה ממחברים אחרים שהעירו על כתביו של אוקלידס לפניו ואחריו, ח'יאם לא ניסה להוכיח את פוסטולט המקבילים אלא לגזור אותו מפוסטולט שקול אותו לקח מ"עקרונות הפילוסוף" (אריסטו):
שני קווים מתכנסים ישרים נחתכים וזה בלתי אפשרי בעבור שני קווים מתכנסים ישרים להתבדר בכיוון שבו הם מתכנסים.
כיאם התייחס לאחר מכן למקרה הישר, הקהה והחד של זוויות הפסגה של מרובע סאקרי, ולאחר שהוכיח מספר משפטים עליהם הוא דחה את המקרה הקהה והחד בהתבסס על הפוסטולט שלו וכך "גזר" את הפוסטולט של אוקלידס.
רק כעבור 600 שנים ג'ורדנו ויטלה(Giordano Vitale) עשה התקדמות נוספת בספרו Euclide restituo (בשנים 1680, 1686), בו הוא השתמש במרובע כדי להוכיח שאם שלוש נקודות על הבסיסים התחתון AB והעליון CD הן שוות מרחק, אז AB ו-CD הם שווי מרחק בכל מקום[2].
סאקרי עצמו ביסס את כל ההוכחה הלוגית (והפגומה) שלו את פוסטולט המקבילים מסביב למרובע ושלושת המקרים שלו, והוכיח משפטים רבים על התכונות שלו במסגרת ניסיונו זה.
מרובעי סאקרי בגאומטריה היפרבולית
תכונות של מרובעי סאקרי
יהי ABCD מרובע סאקרי אשר AB הוא הבסיס שלו, CD הוא הפסגה שלו ו-CA ו-DB הצלעות השוות שניצבות לבסיס התחתון. התכונות הבאות תקפות לכל מרובע סאקרי בגאומטריה היפרבולית:
^בספרות המתמטית המוקדמת על גאומטריה לא-אוקלידית, התייחסו למקרה ההיפרבולי כאל היפותזת הזווית החדה.
^זו הייתה התקדמות משמעותית בהבנה של הבעיות הללו; כאשר הנחה זאת מתקיימת עבור שתי נקודות בלבד, אז היא אינה תנאי מספיק לכך ששני הישרים שווי מרחק בכל מקום.
^P. Buser and H. Karcher. Gromov's almost flat manifolds. Asterisque 81 (1981), page 104.