Tournoi de tennis d'Astana
|
Read other articles:
Battaglia di Dhu QarL'Iran all'inizio del VII secoloData611 LuogoDhū Qār (Quello del catrame) Modifiche territorialiBeduini arabi sconfiggono per la prima volta formazioni regolari persiane sasanidi SchieramentiArabi dei B. Bakr b. Wāʾil e di varie altre tribù (Taghlib, Iyāḍ, Quḍāʿa, Tamīm, Ghaṭafān, Hawāzin, Kinda e Thaqīf)Esercito sasanide ComandantiHanīʾ b. Masʿūd al-ShaybānīḤanẓala b. Thaʿlaba b. Sayyār al-ʿIjlīHāmrez di TustarIyās b. Qubayṣa (dei B. ...
Comics originating in Portugal Portuguese comicsA page from O Gafanhoto comic magazine (1910).Earliest publications1872PublishersKingpin BooksEl PepPolvoPublicationsA fórmula da felicidadeHans, o cavalo cansadoKuronekoMarço AnormalThe PositivesCreatorsRafael Bordalo PinheiroCarlos BotelhoJoão Abel MantaEduardo Teixeira CoelhoCarlos RoqueSeries and charactersBanzaiO GafanhotoO MosquitoZé PovinhoTom VitoinLanguagesPortugueseRelated articlesBrazilian comicsEuropean comicsSpanish comics Portu...
العلاقات المارشالية اللاتفية جزر مارشال لاتفيا جزر مارشال لاتفيا تعديل مصدري - تعديل العلاقات المارشالية اللاتفية هي العلاقات الثنائية التي تجمع بين جزر مارشال ولاتفيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: و...
Norbert Orthen (2021) Norbert Orthen (* 10. Juni 1948 in Wissen (Sieg)) ist ein deutscher Herausgeber und Redakteur. Er befasst sich seit Jahren besonders mit der Geschichte von Altenberg. Inhaltsverzeichnis 1 Leben 2 Altenberger Dom 3 Rheinisch-Bergischer Kalender 4 Auszeichnungen 5 Schriften 6 Einzelnachweise 7 Weblinks Leben Nach seinem Abitur am Hölderlin-Gymnasium in Köln-Mülheim 1969 studierte er an der Universität zu Köln Germanistik, Biologie und Pädagogik. Er promovierte 1976 i...
Samantha Womack Samantha en 2016.Información personalOtros nombres Sam JanusSamantha JanusNacimiento 2 de noviembre de 1972 (51 años)Brighton, Inglaterra, Reino UnidoResidencia Tordoia Nacionalidad BritánicaFamiliaCónyuge Mark Womack (2009-presente) Marco Mantovani (1997-1998)Hijos Lily-Rose Womack (2005-)Benjamin Womack (2001-)Michael Womack (hijastro)EducaciónEducada en Escuela Sylvia Young de teatro Información profesionalOcupación actriz, cantanteAños activa desde 1991G...
Madrasah Tarbiyah Islamiyah TarusanAlamatNagari Kamang Mudiak, Kecamatan Kamang MagekAgam, Sumatera BaratIndonesiaInformasiJenisPondok pesantrenDidirikan1934PendiriBuya H. Arifin Jamil Tk. SolokPengasuhBuya H. Sisfar ArifinLain-lainMoto Madrasah Tarbiyah Islamiyah Tarusan, disingkat MTI Tarusan, adalah pondok pesantren yang terletak di Kamang Mudiak, Agam. Lembaga pendidikan Islam ini didirikan oleh Buya Arifin Jamil Tuanku Solok, murid Syekh Sulaiman ar-Rasuli dan tokoh Persatuan Tarbiyah Is...
العلاقات المدغشقرية الموريتانية مدغشقر موريتانيا مدغشقر موريتانيا تعديل مصدري - تعديل العلاقات المدغشقرية الموريتانية هي العلاقات الثنائية التي تجمع بين مدغشقر وموريتانيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولت...
Matrix relating system inputs and outputs In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems.[1] The matrix relates the outputs of the system to its inputs. It is a particularly useful construction for linear time-invariant (LTI) systems because it can be expressed in terms of the...
1801 treaty between France and Spain Treaty of Aranjuez (1801)Italy 1796 (simplified); note Duchies of Parma (light green) and Tuscany (yellow)ContextConfirmation of the Third Treaty of San Ildefonso; Spain agrees to transfer Louisiana to France in exchange for six ships of the line, and territories in ItalySigned21 March 1801 (1801-03-21)LocationAranjuez, SpainNegotiators Lucien Bonaparte Manuel Godoy Parties France Spain The Treaty of Aranjuez (1801) was signed on 21 Ma...
Branch of Agew people in Eritrea This article is about African ethnic group. For legendary Persian warrior Zaul, see Zāl. This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (April 2020) ZaulዛውልRegions with significant populationsCentral, SouthernLanguages Agaw Tigre Tigrinya ReligionPredominantly Christianity (Eritrean Orthodox Church, Catholicism, P'ent'ay)Related ethnic groupsA...
Martyrs and saints in Early Christianity The Four Crowned MartyrsThe Four Crowned Martyrs, Nanni di Banco, Orsanmichele, Florence, ca. 1415.MartyrsBorn3rd century ADDiedbetween 287 and 305Castra Albana (1st Group)Sava River, Pannonia (2nd Group)Venerated inRoman Catholic ChurchEastern Orthodox ChurchOriental OrthodoxyAnglican CommunionFeastAugust 8 (Group 1)November 8 (Group 2)Patronagesculptors, stonemasons, stonecutters; against fever; cattle The Four Crowned Martyrs or Four Holy Crown...
Early Bronze Age human settlement period An unrestored beehive tomb from the Hafit period at Jebel Hafeet, on the border of the U.A.E. and Oman. Most of the hundreds of tombs to be found at the eastern foothills of the mountain have collapsed. The Hafit period defines early Bronze Age human settlement in the United Arab Emirates and Oman in the period from 3200 to 2600 B.C. It is named after the distinctive beehive burials first found on Jebel Hafit, a rocky mountain near Al Ain, bordering th...
Geometry Theorem Illustration of Haruki's Theorem: s 1 s 2 ⋅ s 3 s 4 ⋅ s 5 s 6 = 1 {\displaystyle {\frac {s_{1}}{s_{2}}}\cdot {\frac {s_{3}}{s_{4}}}\cdot {\frac {s_{5}}{s_{6}}}=1} Haruki's Theorem says that given three intersecting circles that only intersect each other at two points that the lines connecting the inner intersecting points to the outer satisfy: s 1 ⋅ s 3 ⋅ s 5 = s 2 ⋅ s 4 ⋅ s 6 {\displaystyle s_{1}\cdot s_{3}\cdot s_{5}=s_{2}\cdot s_{4...
МуниципалитетСервья-де-ТерCervià de Ter Герб[d] 42°04′09″ с. ш. 2°54′42″ в. д.HGЯO Страна Испания Автономное сообщество Каталония Провинция Жирона Район Жиронес Мэр Гильем Суррока Паскуаль[d] История и география Площадь 9,9 км² (2016)[1] Высота 45 м[1] Часовой ...
Rumah Adat Tradisional Joglo Demak, Khas Kab.Demak Jawa Tengah Anjungan Kabupaten Demak adalah salah satu Anjungan Daerah di Taman Mini Jawa Tengah (Puri Maerokoco). Anjungan ini menampilkan beberapa arsitektur rumah adat khas Demak. Bangunan – bangunan dalam anjungan Demak terdiri atas Joglo Demak, Masjid Agung Demak, Tugu Belimbing, dll. Joglo Demak Joglo Demak adalah Rumah Adat Demak merupakan salah satu rumah tradisional yang mencerminkan perpaduan akulturasi kebudayaan masyarakat Demak...
Healin' Good PreCureSampul Volume pertama Blu-ray dari seri ini.ヒーリングっど♡プリキュア(Hīrin Guddo ♡ Purikyua)GenreMahou shōjo Seri animeSutradaraYoko IkedaProduserYasui KazunariSkenarioJunko KomuraMusikShiho TeradaStudioToei AnimationSaluranasliANN (ABC, TV Asahi)Tayang 2 Februari 2020 – 21 Februari 2021Episode45 (Daftar episode) MangaPengarangIzumi TodoIlustratorFutago KamikitaPenerbitKodanshaImprintWide KCMajalahNakayoshiDemografiShōjoTerbitMaret 2020 – sekarangVo...
Greater palatine foramenPermanent teeth of upper dental arch, seen from below. (Greater palatine foramen labeled at lower right.)Base of skull. Inferior surface.DetailsIdentifiersLatinforamen palatinum majusTA98A02.1.00.058TA2463FMA53173Anatomical terminology[edit on Wikidata] At either posterior angle of the hard palate is the greater palatine foramen, for the transmission of the descending palatine vessels and greater palatine nerve; and running anteriorly (forward) and medially (toward...
Hafen von Tokio Daten UN/LOCODE JPTYO Eigentümer Tokyo Port Authority Hafentyp Tiefwasserhafen Container (TEU) 4,51 Millionen (2019) Geografische Informationen Ort Tokio Präfektur Präfektur Tokio Staat Japan Koordinaten 35° 37′ 1″ N, 139° 47′ 44″ O35.616944139.7955560Koordinaten: 35° 37′ 1″ N, 139° 47′ 44″ O Hafen von Tokio (Japan) Lage Hafen von Tokio Der Hafen von Tokio ist der größte japanische Seehafen n...
Air Terjun YosemiteAir Terjun Yosemite dari Lembah YosemiteLokasiLembah Yosemite, Taman Nasional Yosemite, California, Amerika SerikatKoordinat37°45′25″N 119°35′48″W / 37.756845°N 119.596785°W / 37.756845; -119.596785Koordinat: 37°45′25″N 119°35′48″W / 37.756845°N 119.596785°W / 37.756845; -119.596785[1]TipeBerjenjangTinggi total2.425 ft (739 m)Jumlah titik3Titik terpanjang1.430 ft (436 m) Air ...
У Вікіпедії є статті про інші значення цього терміна: Час (значення). Час — анізотропна (незворотна) умова зміни станів в матеріальній дійсності, в онтології аналогічний фізичному часу, в екзистенційному розумінні — екзистенційним ідеям «минулого», «теперішнього»,...