Tout cristal hexagonal possède un axe de rotation ou de rotoinversion senaire : 6 ou 6. Le système cristallin hexagonal est constitué des 7 groupes ponctuels tels que tous leurs groupes d'espace ont le réseau hexagonal comme réseau sous-jacent.
Le graphite est un exemple de minéral qui cristallise dans le système cristallin hexagonal.
Liste des groupes ponctuels
Les groupes ponctuels (classes cristallines) de ce système cristallin sont listés ci-dessous, ainsi que leur représentation dans les notations d'Hermann-Mauguin (ou notation internationale) et Schoenflies et des exemples de minéraux[1],[2].
Les réseaux hexagonal compact (HC, ou HCP) et hexagonal compact double (HCD, ou DHCP) sont deux des trois modes d'empilement compact de sphères identiques les plus simples, le troisième étant le réseau cubique à faces centrées (CFF, ou FCC. Contrairement à ce dernier, les réseaux HC et HCD ne sont pas des réseaux de Bravais car il existe deux ensembles non équivalents de nœuds de réseau. Ils peuvent être construits à partir du réseau de Bravais hexagonal en utilisant un motif à deux atomes, l'atome supplémentaire du réseau hexagonal compact étant situé aux coordonnées (a2, b2, c2) = ( 2⁄ 3, 1⁄ 3, 1⁄ 2)[4].
La famille cristalline hexagonale est constituée des 12 groupes ponctuels tels qu'au moins un de leurs groupes d'espace a le réseau hexagonal comme réseau sous-jacent, et est l'union du système cristallin hexagonal et du système cristallin trigonal[1].