En mathématiques, et plus précisément en analyse, on définit, pour des fonctions définies sur un intervalle borné, la notion de fonction absolument continue, un peu plus forte que la notion de fonction uniformément continue, et garantissant de bonnes propriétés d'intégration ; on lui associe d'ailleurs la notion de mesure absolument continue.
Par contre, une fonction F continue et presque partout dérivable peut ne pas être égale à l'intégrale de sa dérivée, même si cette dérivée estL1. Considérons par exemple l'escalier de Cantor ou la fonction de Minkowski : ces deux fonctions sont presque partout dérivables, de dérivée presque partout nulle ; donc l'intégrale de leur dérivée est nulle. Ce phénomène était bien connu dans le cas de fonctions discontinues (les fonctions indicatrices par exemple) mais moins intuitif dans le cas continu, ce qui a conduit à la notion de continuité absolue : une fonction absolument continue est continue et de plus égale à l'intégrale de sa dérivée.
Définition
Soit I un intervalle réel. On dit qu'une fonctionF : I → ℝ est absolument continue si, pour tout réel ε > 0, il existe un δ > 0 tel que, pour toute suite finie de sous-intervalles de I d'intérieurs disjoints,
F est absolument continue sur [a, b] si et seulement s'il existe une fonction f intégrable sur [a, b] (au sens de Lebesgue) telle que pour tout x ∈ [a, b],
L'ensemble des fonctions absolument continues sur [a, b] est égal à l'espace de SobolevW1,1(]a, b[).
Réciproquement, si F est continue, à variation bornée et possède la propriété N de Luzin, alors elle est absolument continue (théorème de Banach-Zarecki[2]).
Le produit de deux fonctions absolument continues sur [a, b] est une fonction absolument continue[3].
La fonction continue qui a pour graphe l'escalier du diable n'est pas absolument continue : l'image de l'ensemble de Cantor, qui est de mesure nulle, est [0,1] tout entier.
La fonction point d'interrogation n'est pas non plus absolument continue puisque de dérivée nulle presque partout. On peut également démontrer qu'elle envoie un ensemble de mesure 0 sur un ensemble de mesure 1.
On dit que ν est absolument continue par rapport à μ si pour tout ensemble mesurable A :
ce que l'on note .
Le théorème de Radon-Nikodym donne une autre caractérisation dans le cas où μ est positive et σ-finie, et ν est complexe et σ-finie : il existe alors f une fonction mesurable telle que dν=f dμ. La fonction f est appelée densité de la mesure ν par rapport à la mesure μ.
Lien entre fonction réelle absolument continue et mesure absolument continue
Une fonction F est localement absolument continue si et seulement si sa distribution dérivée est une mesure absolument continue par rapport à la mesure de Lebesgue.
Par exemple, une mesure μ bornée sur l'ensemble des boréliens de la droite réelle est absolument continue par rapport à la mesure de Lebesgue si et seulement si la fonction de répartition associée
est localement une fonction absolument continue.
Notes et références
↑Voir l'introduction de (en) Jiří Šremr, « Absolutely continuous functions of two variables in the sense of Carathéodory », Electron. J. Diff. Equ., vol. 2010, no 154, , p. 1-11 (lire en ligne)