|
Tähän artikkeliin tai osioon ei ole merkitty lähteitä, joten tiedot kannattaa tarkistaa muista tietolähteistä. Voit auttaa Wikipediaa lisäämällä artikkeliin tarkistettavissa olevia lähteitä ja merkitsemällä ne ohjeen mukaan.
|
Jacobin elliptiset funktiot ovat kahdentoista erikoisfunktion joukko. Ne tulevat vastaan etsittäessä käänteisfunktiota ensimmäisen lajin elliptiselle integraalille. Jacobin elliptiset funktiot muistuttavat monilta ominaisuuksiltaan trigonometrisia funktioita ja niiden nimeämisessä on tiettyjä yhtäläisyyksiä. Funktiot otti käyttöön Carl Gustav Jakob Jacobi noin vuonna 1830.
sn, cn ja dn
Olkoon ensimmäisen lajin elliptinen integraali määritelty Legendren muodossa
- ,
missä on elliptisen integraalin amplitudi. Määritellään uusi funktio siten, että
- .
Vastaavasti toinen funktio saadaan kosinin avulla
- .
Kolmas funktio on
- .
Nämä ovat kolme ensimmäistä Jacobin elliptistä funktiota. Viimeistä funktiota kutsutaan joskus myös delta amplitudiksi. Trigonometristen funktioiden tapaan näille on voimassa
ja funktion määritelmästä nähdään, että
- .
Muita Jacobin elliptisiä funktioita
Lisää Jacobin elliptisiä funktioita saadaan edellisten osamäärinä. Huomaa kuinka uusien funktioiden nimet muodostuvat:
Kaikille funktioille voidaan kirjoittaa käänteisfunktio periaatteella
Yhteys trigonometrisiin ja hyperbolisiin funktioihin
Jacobin elliptisillä funktioilla on yhteys sekä trigonometrisiin funktioihin että hyperbolisiin funktioihin elliptisen modulin kautta ja elliptisiä funktioita voidaan pitää näiden alkeisfunktioiden kaksijaksoisina yleistyksinä. Trigonometrisiin funktioihin ovat voimassa relaatiot
ja hyperbolisiin funktioihin
Esiintyminen differentiaaliyhtälöiden ratkaisuna
Jacobin elliptiset funktiot ratkaisevat eräitä epälineaarisia differentiaaliyhtälöitä. Näiden yhtälöiden yleinen muoto on
- ,
missä A, B, C ja D ovat vakioita. Esimerkiksi funktio toteuttaa yhtälöt
- sekä
- .
Funktio toteuttaa yhtälöt
- sekä
ja funktio toteuttaa yhtälöt
- sekä
Katso myös
Aiheesta muualla