Cavalierin vuonna 1632 julkaistu Directorum universale uranometricum sisälsi sini-, tangentti-, sekantti- ja versaalisinifunktioiden taulukot sekä näiden logaritmit kahdeksan numeron tarkkuudella. Cavalierin tärkein teos oli vuoden 1635 Geometria indivisibilibus continuorum, joka oli eräs uuden ajan alun keskeisimpiä matemaattisia teoksia.[3] Tässä kirjassa Cavalieri käsittelee ajatusta, jonka mukaan kappaleiden pinta-ala ja tilavuus koostuvat jakamattomista suorista, joita ikään kuin integroidaan geometrisesti erimuotoisten kappaleiden tilavuuksien määrittämiseksi. Nykyisillä differentiaalilaskennan merkinnöillä Cavalierin tärkein teoreema vastaa yhtälöä:[3]
Hänen mukaansa on saanut nimensä kappaleiden tilavuuksia koskeva Cavalierin periaate.
Tärkeimmät teokset
Directorum universale uranometricum (1632)
Geometria indivisibilibus continuorum nova quadam ratione promota (1635)
Exercitationes geometricae sex (1647), suom. "Kuusi geometrista harjoitusta"
↑ abcdBoyer, Carl B. & Merzbach, Uta C.: Tieteiden kuningatar – Matematiikan historia, osa I, s. 465–469. ("Bonaventura Cavalieri", "Spiraali ja paraabeli") Suomentanut Kimmo Pietiläinen. Helsinki: Art House, 1994. ISBN 951-884-150-0