می‌خواهم برگردی

«می‌خواهم برگردی»
تک‌آهنگ جکسون فایو
از آلبوم دایانا راس جکسون فایو را معرفی می‌کند
بی-ساید«چه کسی دوستت دارد»
تاریخ پخش۷ اکتبر، ۱۹۶۹ (US)[۱]
فرمتصفحهٔ گرامافون ۷ اینچ (۴۵ دور در دقیقه)
تاریخ ضبطژوئیه - سپتامبر، ۱۹۶۹
استودیوساوند فکتوری، وست هالیوود، کالیفرنیا
ژانر
زمان۲:۵۹
ناشرموتاون
M 1157
ترانه‌نویس(ها)
تهیه‌کننده(ها)The Corporation
گاه‌نگاری تک‌آهنگ‌های جکسون فایو
«پسر بزرگ»
(1968)
«می‌خواهم برگردی»
(۱۹۶۹)
«اِی‌بی‌سی»
(1970)

«می‌خواهم برگردی» (به انگلیسی: I Want You Back) نخستین تک‌آهنگ گروه جکسون فایو است. این تک‌آهنگ توسط شرکت موسیقی موتاون در ۷ اکتبر ۱۹۶۹ منتشر شد و در ۳۱ ژانویهٔ ۱۹۷۰ به رتبهٔ ۱ جدول ۱۰۰ آهنگ داغ بیلبورد رسید. گروه جکسون فایو که متشکل از ۵ برادر از خانواده جکسون بودند، توانستند با این ترانه در سطح ملی معروف شوند و توجه‌ها را به سمت خود جلب کنند.

این تک‌آهنگ توسط اکثر منتقدین موسیقی، به عنوان یکی از ماندگارترین ترانه‌های تاریخ نام معرفی می‌شود.

منابع

  1. "History 1969". Thejacksons.com. Archived from the original on 4 March 2016. Retrieved December 5, 2015.
  2. ASCAP entry for song بایگانی‌شده در ۲۰۱۱-۰۵-۳۰ توسط Wayback Machine ASCAP, accessed 28 May 2011

پیوند به بیرون

Read other articles:

画像提供依頼:常福寺、海遊ふれあいパークの画像提供をお願いします。(2021年10月) おぎし 小城市 清水の滝 小城市章 小城市旗2006年3月3日制定 小城市章2006年3月3日制定 国 日本地方 九州地方都道府県 佐賀県市町村コード 41208-2法人番号 1000020412082 面積 95.81km2総人口 43,190人 [編集](推計人口、2023年11月1日)人口密度 451人/km2隣接自治体 佐賀市、多久市、杵島郡江北

 

Автошлях Т 1833Загальні даніКраїна  УкраїнаНомер Т 1833 Області РівненськаРайони РокитнівськийДовжина 8,2 кмпочаток Познанькінець ГлиннеЗ'єднання Т 1829OpenStreetMap ↑71236 ·R (Рівненська область) Автошля́х Т 1833 — автомобільний шлях територіального значення у Рівненсь...

 

Портативная игровая система (портативная игровая приставка) — лёгкое, компактное, портативное электронное устройство, предназначенное для того, чтобы играть в видеоигры. От игровых приставок (игровых консолей) такие устройства отличаются компактностью и мобильност...

Pour les articles homonymes, voir Weinberg. Cet article est une ébauche concernant un physicien américain. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Alvin M. WeinbergAlvin WeinbergBiographieNaissance 20 avril 1915ChicagoDécès 18 octobre 2006 (à 91 ans)Oak RidgeNom dans la langue maternelle Alvin Martin WeinbergNationalité américaineFormation Université de ChicagoTheodore Roosevelt High Sch...

 

Local authority of Westmorland and Furness, England Westmorland and Furness CouncilCouncil logoTypeTypeUnitary authority HistoryFounded1 April 2023Preceded byCumbria County CouncilLeadershipChairmanMatt Severn, Liberal Democrats since 17 May 2022[1] LeaderJonathan Brook, Liberal Democrats since 17 May 2022[2] StructureSeats65 councillorsPolitical groups Administration (36)   Liberal Democrat (36) Other parties (29)   Labour (15)   Conservative (11) ...

 

Enak EnakGenreGaya hidupPresenterMaya Wulan Sylvia GenpatiNegara asalIndonesiaBahasa asliBahasa IndonesiaProduksiDurasi30 menitRumah produksiNET. EntertainmentDistributorNet Visi MediaRilisJaringan asliFormat gambarHDTV (1080i 16:9)Format audioDolby Digital 5.1Rilis asli23 Februari (2020-02-23) –19 April 2020 (2020-4-19)Acara terkaitOK Food Bikin Laper (Trans TV) Goyang Lidah (antv) Nge-Meal (GTV) Makan Kuy! (GTV)Pranala luar[Akun Instagram: @enakenak_net Situs web] Enak Enak...

Canadian television series Murdoch MysteriesGenre Crime Mystery Period drama Based onCharacters from novelsby Maureen JenningsDeveloped by R.B. Carney Cal Coons Alexandra Zarowny Starring Yannick Bisson Hélène Joy Thomas Craig Jonny Harris Georgina Reilly (seasons 6-9) ComposerRobert CarliCountry of originCanadaNo. of seasons17No. of episodes272 (list of episodes)ProductionExecutive producers Scott Garvie Noel Hedges Cal Coons Christina Jennings Producers Jan Peter Meyboom Julie Lacey Laura...

 

Country home of Charles Dickens Gads Hill Place today Dickens' Dream by Robert William Buss, portraying Dickens at his desk at Gads Hill surrounded by many of his characters Group portrait in the porch at Gads Hill Place in 1862, H.F. Chorley, Kate Dickens, Mamie Dickens, Charles Dickens, C.A. Collins and Georgina Hogarth Gads Hill Place in Higham, Kent, sometimes spelt Gadshill Place and Gad's Hill Place, was the country home of Charles Dickens, the most successful British author of the Vict...

 

Category 4 Pacific hurricane in 2018 Hurricane Hector Hector at peak intensity southeast of Hawaii on August 6Meteorological historyFormedJuly 31, 2018DissipatedAugust 16, 2018Category 4 hurricane1-minute sustained (SSHWS/NWS)Highest winds155 mph (250 km/h)Lowest pressure936 mbar (hPa); 27.64 inHgOverall effectsFatalitiesNoneDamageMinimalAreas affectedHawaii, Johnston AtollIBTrACS / [1]Part of the 2018 Pacific hurricaneand typhoon seasons Hurricane Hector was ...

1998 single by the MisfitsI Wanna Be a NY RangerSingle by the MisfitsReleasedAugust 1998RecordedMay 1998GenreHorror punkLength1:38LabelNon-Homogenized Productions Ltd.Songwriter(s)John CafieroProducer(s)John CafieroMisfits singles chronology Dig Up Her Bones (1997) I Wanna Be a NY Ranger (1998) Scream! (1999) Audio sampleThe marketing department of the New York Rangers objected to the use of the word danger in the song's lyrics.filehelp I Wanna Be a NY Ranger is the eighth single by Ameri...

 

Alcácer do Sal Estação de Alcácer do Sal, em 2001 Linha(s): Linha do Sul (PK 78,247) Coordenadas: 38° 22′ 22,34″ N, 8° 31′ 29,8″ O Concelho: Alcácer do Sal Equipamentos: Inauguração: 25 de Maio de 1920 Encerramento: 1 de Dezembro de 2011 (passageiros) A Estação Ferroviária de Alcácer do Sal é uma interface encerrada da Linha do Sul, que servia a localidade de Alcácer do Sal, no distrito de Setúbal, em Portugal. Entrou ao serviço em 25 de Maio de 1920[1] e foi encerrad...

 

鎌倉橋 鎌倉橋基本情報国 日本所在地 東京都千代田区交差物件 日本橋川建設 1926年座標 北緯35度41分19.9秒 東経139度46分00.23秒 / 北緯35.688861度 東経139.7667306度 / 35.688861; 139.7667306構造諸元形式 アーチ橋材料 コンクリート全長 30.1 m幅 22 m関連項目 橋の一覧 - 各国の橋 - 橋の形式テンプレートを表示 鎌倉橋(かまくらばし)は、東京都千代田区にある日本橋...

Fictional character from Encanto Fictional character Mirabel MadrigalEncanto characterFirst appearanceEncantoNovember 3, 2021Created byJared BushByron HowardVoiced byStephanie BeatrizNoemi Josefina Flores[1] (young)In-universe informationFamily Julieta (mother) Agustín (father) Isabela (sister) Luisa (sister) Relatives Alma (grandmother) Pedro (grandfather) Félix (uncle) Pepa (aunt) Bruno (uncle) Dolores (cousin) Camilo (cousin) Antonio (cousin) NationalityColombian Mirabel Madrigal...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (January 2020) This biography of a living person includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Co...

 

For other people named al-Hajjaj, see Hajjaj. Umayyad governor and viceroy (c.661-714) Al-Hajjaj ibn YusufSeal of al-Hajjaj ibn YusufUmayyad governor of the HejazIn office692–694MonarchAbd al-Malik (r. 685–705)Preceded byTariq ibn AmrSucceeded byYahya ibn al-HakamUmayyad governor of IraqIn office694–714MonarchsAbd al-Malik (r. 685–705) Al-Walid I (r. 705–715)Preceded byBishr ibn MarwanSucceeded byYazid ibn Abi Kabsha al-Saksaki Personal detailsBornc. 661 CETa...

Daughter of Oedipus in Greek mythology This article is about the daughter of Oedipus. For other uses, see Antigone (disambiguation). Not to be confused with Antigona. AntigoneAntigone by Frederic Leighton, 1882.AbodeThebes, Ancient GreecePersonal informationParentsOedipusJocasta or EuryganeiaSiblingsIsmeneEteoclesPolynices In Greek mythology, Antigone (/ænˈtɪɡəni/ ann-TIG-ə-nee; Ancient Greek: Ἀντιγόνη, romanized: Antigónē) is a Theban princess and a character in several...

 

Shortest network connecting points Euclidean minimum spanning tree of 25 random points in the plane A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Real Zamora – news · newspapers · books · scholar · JSTOR (January 2016) (Learn how and when to remove this template message) Football clubReal ZamoraFull nameClub Deportivo Real ZamoraNickname(s)Los chongueros (The Chongos zamoranos)Founded26 December 195...

Museum in Yerevan, ArmeniaLittle Einstein Science MuseumLocationYerevan, ArmeniaTypeMuseumFounderMarina Grigoryan Little Einstein Science Museum is an interactive science museum in Yerevan which incorporates 25 exhibits of different scientific areas such as electricity, magnetism, optics, physics, mechanics, natural sciences, etc. History The museum is for children aging seven or higher. Since the time of its inauguration in 2016, the founders of the museum have organized interactive show pro...

 

Tennis at the Olimpiade Musim Panas 2020Tanggal24 Juli–1 Agustus 2021Jenis lap.Hard (DecoTurf)LokasiColiseum AriakeJuaraTunggal Putra Alexander Zverev (GER)Tunggal Putri Belinda Bencic (SUI)Ganda Putra Nikola Mektić & Mate Pavić (CRO)Ganda Putri Barbora Krejčíková & Kateřina Siniaková (CZE)Ganda Campuran Anastasia Pavlyuchenkova & Andrey Rublev (ROC) ← 2016 ·Olimpiade Musim Panas· 2024 → C...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!