درگاه:ریاضیات

صفحه اصلی   رده‌ها و موضوعات   درگاه‌ها و پروژه‌ها

درگاه ریاضیات


نماد ریاضی
نماد ریاضی

ریاضیات (Mathematics) را معمولاً دانش بررسی کمیت‌ها و ساختار‌ها و فضا و تبدیل تعریف می‌کنند. دیدگاه دیگری ریاضی را دانشی می‌داند که در آن با استدلال منطقی از اصول و تعریف‌ها به نتایج دقیق و جدیدی می‌رسیم. دیدگاه‌های دیگری نیز در فلسفه ریاضیات بیان شده‌است.

اگرچه ریاضیات خود یکی از علوم طبیعی به‌شمار نمی‌رود ولی ساختارهای ویژه‌ای که ریاضی‌دانان می‌پژوهند، بیشتر از دانش‌های طبیعی به ویژه فیزیک سرچشمه می‌گیرند و در فضایی جدا از طبیعت و محض‌گونه گسترش پیدا می‌کند به طوری که علوم طبیعی برای حل مسائل خود به ریاضی باز می‌گردند تا جوابشان را با آن مقایسه و بررسی کنند.

علوم طبیعی، مهندسی و اقتصاد، بسیار به ریاضیات تکیه دارند. آن بخش از ریاضیات را که علوم کاربردی به آن بیشتر می‌پردازند، ریاضیات کاربردی می‌نامند. ولی گاه ریاضی‌دانان به دلایل صرفاً ریاضی و نه کاربردی به تعریف و بررسی برخی ساختارها می‌پردازند که به آن ریاضیات محض گفته می‌شود.

نوشتار برگزیده

هندسه مطالعهٔ انواع روابط طولی و اشکال و خصوصیات آن‌ها است. این دانش همراه با حساب یکی از دو شاخهٔ قدیمی ریاضیات است. واژهٔ هندسه، عربی شدهٔ واژهٔ «اندازه» در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن géométrie می‌گویند که هر دو از γεωμετρία (گئومتریا) در زبان یونانی آمده که به معنای اندازه‌گیری زمین است.

احتمالاً بابلیان و مصریان کهن نخستین کسانی بودند که اصول هندسه را کشف کردند. مصریان روش علامت‌گذاری زمین‌ها با تیرک و طناب را ابداع کردند. در آغاز هندسه بر پایهٔ دانسته‌های تجربی پراکنده‌ای در مورد طول و زاویه و مساحت و حجم قرار داشت که برای مساحی و ساختمان و نجوم و برخی صنایع دستی لازم می‌شد. بعضی از این دانسته‌ها بسیار پیشرفته بودند مثلاً هم مصریان و هم بابلیان قضیه فیثاغورث را ۱۵۰۰ سال قبل از فیثاغورث می‌شناختند.

زندگی‌نامهٔ برگزیده

مریم میرزاخانی (۱۳ اردیبهشت ۱۳۵۶ – ۲۳ تیر ۱۳۹۶) ریاضی‌دان ایرانی-آمریکایی و استاد دانشگاه استنفورد بود. میرزاخانی در سال ۲۰۱۴ به خاطر کار بر «دینامیک و هندسه سطوح ریمانی و فضاهای پیمانه‌ای آنها» برندهٔ مدال فیلدز شد، که بالاترین جایزه در ریاضیات است. وی تنها زن برندهٔ مدال فیلدز است. زمینهٔ تحقیقاتی او مشتمل بر نظریه تایشمولر، هندسه هذلولوی، نظریه ارگودیک و هندسه هم‌تافته بود. میرزاخانی برنده جوایزی چون جایزه ستر از انجمن ریاضی آمریکا در سال ۲۰۱۳ و جایزهٔ کلی بود.

بیشتر…

مفاهیم

نمودار تابع '"`UNIQ--postMath-00000001-QINU`"'
نمودار تابع

تابع یکی از مفاهیم نظریه مجموعه‌ها و حساب دیفرانسیل و انتگرال است. بطور ساده می‌توان گفت که به قاعده‌های تناظری که به هر ورودی خود یک و فقط یک خروجی نسبت می‌دهند، تابع گفته می‌شود. تابع به عنوان مفهومی در ریاضیات، توسط گوتفرید لایبنیتس در سال ۱۶۹۴، با هدف توصیف یک کمیت در رابطه با یک منحنی مانند شیب یک نمودار در یک نقطه خاص به وجود آمد. امروزه به توابعی که توسط لایبنیز تعریف شدند، توابع مشتق‌پذیر می‌گوییم.

نوشتارهای برگزیده

نگارهٔ برگزیده

مُحیط يا پيرامون در هندسه به خط و مسیری می‌گویند که یک سطح را در میان خود می‌گیرد. محیط به معنای فراگیرنده است و به درازای بخش بیرونی یک شکل گفته می‌شود. یعنی فاصله‌ای که بر لبه بیرونی یک شکل می‌پیماییم تا به نقطه اول خود بازگردیم محیط می‌گوییم. به خود لبه بیرونی نیز اصطلاحاً محیط گفته می‌شود.

گفتاورد

«مطالعه ریاضی برایم دو مرحله دارد. مرحلۀ اول مطالعۀ پژوهش‌های قبلی است. خواندن ریاضیات زیبا، مثل قدم زدن در یک شهر تاریخی زیبا است، که طی آن شما بناهای زیبایی می‌بینید. مرحله دوم مثل این است که ناگهان بال درآوردم و می‌توانم بر فراز شهر پرواز کنم و چیزهایی را ببینم که از روی زمین معلوم نبود»..

کوچر بیرکار

هندسه

یک دایره با مشخصات آن (مرکز، شعاع)
یک دایره با مشخصات آن (مرکز، شعاع)

دایره مکان هندسی نقاطی از صفحه است که فاصله‌شان از نقطهٔ ثابتی واقع در آن صفحه، مقدار ثابتی باشد. نقطهٔ ثابت، «مرکز دایره»، و مقدار ثابت، «اندازهٔ شعاع دایره» نامیده می‌شود. در حقیقت، دایره یک بیضی است که کانون‌های آن بر همدیگر منطبق‌اند.

  • = محیط دایره
  • = مساحت دایره

آیا می‌دانستید؟

آیا می‌دانستید...
آیا می‌دانستید...

... که اعداد کاتالان برخی از مسائل ترکیبیاتی مثل طرق تکمیل پرانتز گذاری یک عبارت جبری با عامل را حل می کند؟


درگاه‌های وابسته

در دیگر پروژه‌های ویکی‌مدیا

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!