Mann–Whitneyren U proba

Estatistikan, Mann–Whitneyren U proba (orobat Mann–Whitney–Wilcoxon (MWW), Wilcoxonen hein-batuketako proba edo Wilcoxon–Mann–Whitney proba izenez ezaguna) aldagai kuantitatibo edo ordinal bati buruzko bi datu-multzo independente populazio berekoak diren erabakitzeko proba estatistiko bat da, homogeneotasun proba bat alegia. Proba ez-parametrikoa da, hau da, ez du datuei buruz aurreko eredurik ezartzen, eta aldagaiak eskala ordinal edo kuantitatibo batean neurtuak izatea soilik eskatzen du.

Adibide bat

15 urteko mutil eta neska zenbaiti kirol-proba bat egin zaie. Hauek dira lortutako datuak:

Mutilak 13.4 15.6 12.8 14.2
Neskak 14.4 13.6 16.8 18.2 17.4

Neskak eta mutilak populazio berekoak izan eta, beraz, datu-multzo bakar batean har daitezkeen erabaki behar da Wilcoxonen hein-batuketako probaren bitartez.

Lehenbizi, datu guztiak batera jartzen dira modu ordenatuan txikienetik handienera, datu bakoitza mutil edo neska bati dagokion zehaztuz, eta datu bakoitzari dagokion heina edo maila ezarriz eta mutilei dagozkien heinak nabarmenduz edo markatuz:

12.8 13.4 13.6 14.2 14.4 15.6 16.8 17.4 18.2
M M N M N M N N N
1 2 3 4 5 6 7 8 9

Probaren estatistikoa W hein edo mailen batura da:

Hipotesi nulupean bi populazioak berdintzat jotzen dira eta horrela, W bi estatistikoek berdintsuak izateko joera izango dute. Probarako ohikoa da W' bi estatistikoetatik W0 txikiena hartzea eta, beraz, kontrastea burutzeko W0 txikiena harturik kalkulatu beharreko probabilitatea hau izango da: P[W<W0].

Erabakia hartzeko, Wilcoxonen hein probarako taulak daude, bi datu-multzoen tamaina ezberdinetarako (n1: lagin handieneko elementu kopurua, n2: lagin txikieneko elementu kopurua):

Wilcoxonen hein-batuketako probarako taula
n1 n2 α adierazgarritasun-maila
0.20 0.10 0.05 0.01
3 2 3 (-) (-) (-)
3 3 7 6 (-) (-)
4 2 3 (-) (-) (-)
4 3 7 6 (-) (-)
4 4 13 10 11 (-)
5 2 4 3 (-) (-)
5 3 8 7 6 (-)
5 4 14 12 11 (-)
5 5 20 19 17 15

Adibidean, %10eko adierazgarritasun-maila aukeratzen bada, taulako balio kritikoa 12 da. . Beraz, H0 hipotesi nulua onartu eta neska eta mutilen datuak populazio berekoak izan eta batera jar daitezkeela erabakitzen da.

Bi W estatistikoetatik txikiena aukeratzearen arrazoia bi estatistikoen baliokidetasunean datza: bata emanda, bestea eman daiteke. Bi laginak batera jarrita, eta tamainakoak, hein edo ordena guztien batura izango da:

Kanpo estekak

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!