Ck-vektorväljade mooduli üle Ck-funktsioonide ringi.
Vektorväljad muutkondadel
Olgu antud muutkondM. Siis vektorväli muutkonnal M seab muutkonna igale punktile vastavusse puutujavektori selles punktis. Teiste sõnadega, muutkonna M iga punkti x jaoks on määratud mingi puutujavektor selles punktis. Abstraktsemas keeles väljendatuna tähendab see, et vektorväli on puutujakihtkonna TMlõige.
Kui vektorväli kujutab endast pidevat, diferentseeruvat, siledat või analüütilist funktsiooni, siis me nimetame vektorvälja vastavalt pidevaks, diferentseeruvaks, siledaks või analüütiliseks. Tähtis on märkida, et need omadused on koordinaadistiku vahetuse korral invariantsed, nii et neid võib avastada, kui kasutada lokaalset väljendust mis tahes pideval, diferentseeruval, siledal või vastavalt analüütilisel kaardil.
Kõikide vektorväljade kogumit muutkonnal M tähistatakse sageli Γ(TM) või C∞(M,TM), eriti kui neid vaadeldakse puutujakihtkonna lõigetena; kõikide siledate vektorväljade kogumit tähistatakse mõnikord ka .
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!