El pendiente hawaiano es muy similar a la unión puntual de una cantidad infinita numerable de círculos, es decir, la rosa de infinitos (numerables) pétalos, pero no son homeomorfos. La diferencia entre ambos espacios se puede ver en que, en el pendiente hawaiano, todo entorno abierto del punto de intersección de las circunferencias contiene todas las circunferencias salvo una cantidad finita (una bola de radio alrededor del origen contiene todos los círuclos cuyo radio es menor que ); en la rosa, en cambio, un entorno del punto de intersección puede no contener ninguna circunferencia entera. Además, la rosa no es compacta (mientras que el pendiente hawaiano sí): el conjunto complementario del punto de intersección es una unión infinita de intervalos abiertos; si les añadimos un entorno suficientemente pequeño del punto de intersección tenemos un recubrimiento por abiertos de la rosa que no tiene ningún subrecubrimiento finito (por lo que no es compacta).
Referencias
Barratt, Michael; Milnor, John (1962). An example of anomalous singular homology, Proceedings of the American Mathematical Society13. pp. 293-297.
Cannon, James W. (2000). The big fundamental group, big Hawaiian earrings, and the big free groups. pp. 273-291.