Zimm–Bragg model

In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm–Bragg model differs by incorporating the ease of propagation (self-replication) with respect to nucleation. It is named for co-discoverers Bruno H. Zimm and J. K. Bragg.

Helix-coil transition models

Helix-coil transition models assume that polypeptides are linear chains composed of interconnected segments. Further, models group these sections into two broad categories: coils, random conglomerations of disparate unbound pieces, are represented by the letter 'C', and helices, ordered states where the chain has assumed a structure stabilized by hydrogen bonding, are represented by the letter 'H'.[1]

Thus, it is possible to loosely represent a macromolecule as a string such as CCCCHCCHCHHHHHCHCCC and so forth. The number of coils and helices factors into the calculation of fractional helicity, , defined as

where

is the average helicity and
is the number of helix or coil units.

Zimm–Bragg

Dimer sequence Statistical weight

The Zimm–Bragg model takes the cooperativity of each segment into consideration when calculating fractional helicity. The probability of any given monomer being a helix or coil is affected by which the previous monomer is; that is, whether the new site is a nucleation or propagation.

By convention, a coil unit ('C') is always of statistical weight 1. Addition of a helix state ('H') to a previously coiled state (nucleation) is assigned a statistical weight , where is the nucleation parameter and is the equilibrium constant

Adding a helix state to a site that is already a helix (propagation) has a statistical weight of . For most proteins,

which makes the propagation of a helix more favorable than nucleation of a helix from coil state.[2]

From these parameters, it is possible to compute the fractional helicity . The average helicity is given by

where is the partition function given by the sum of the probabilities of each site on the polypeptide. The fractional helicity is thus given by the equation

Statistical mechanics

The Zimm–Bragg model is equivalent to a one-dimensional Ising model and has no long-range interactions, i.e., interactions between residues well separated along the backbone; therefore, by the famous argument of Rudolf Peierls, it cannot undergo a phase transition.

The statistical mechanics of the Zimm–Bragg model[3] may be solved exactly using the transfer-matrix method. The two parameters of the Zimm–Bragg model are σ, the statistical weight for nucleating a helix and s, the statistical weight for propagating a helix. These parameters may depend on the residue j; for example, a proline residue may easily nucleate a helix but not propagate one; a leucine residue may nucleate and propagate a helix easily; whereas glycine may disfavor both the nucleation and propagation of a helix. Since only nearest-neighbour interactions are considered in the Zimm–Bragg model, the full partition function for a chain of N residues can be written as follows

where the 2x2 transfer matrix Wj of the jth residue equals the matrix of statistical weights for the state transitions

The row-column entry in the transfer matrix equals the statistical weight for making a transition from state row in residue j − 1 to state column in residue j. The two states here are helix (the first) and coil (the second). Thus, the upper left entry s is the statistical weight for transitioning from helix to helix, whereas the lower left entry σs is that for transitioning from coil to helix.

See also

References

  1. ^ Samuel Kutter; Eugene M. Terentjev (16 October 2002). "Networks of helix-forming polymers". European Physical Journal E. 8 (5). EDP Sciences: 539–47. arXiv:cond-mat/0207162. Bibcode:2002EPJE....8..539K. doi:10.1140/epje/i2002-10044-x. PMID 15015126. S2CID 39981396.
  2. ^ Ken A. Dill; Sarina Bromberg (2002). Molecular Driving Forces – Statistical Thermodynamics in Chemistry and Biology. Garland Publishing, Inc. p. 505.
  3. ^ Zimm, BH; Bragg JK (1959). "Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains". Journal of Chemical Physics. 31 (2): 526–531. Bibcode:1959JChPh..31..526Z. doi:10.1063/1.1730390.

Read other articles:

American actress (1899–1991) Aline MacMahonMacMahon in the 1940sBornAline Laveen MacMahon(1899-05-03)May 3, 1899McKeesport, Pennsylvania, U.S.DiedOctober 12, 1991(1991-10-12) (aged 92)New York City, U.S.Alma materBarnard CollegeOccupationActressYears active1920–1975Spouse Clarence Stein ​ ​(m. 1928; died 1975)​ Aline Laveen MacMahon[1] (May 3, 1899 – October 12, 1991)[2] was an American actress. Her Broadway ...

 

Alexander Gordon 'Alex' Higgins Alex Higgins (1968) Persoonlijke informatie Bijnaam Hurricane Geboortedatum 18 maart 1949 Land Noord-Ierland Overlijdensdatum 24 juli 2010 Sportieve informatie Hoogste ranking 2 Hoogste break 142 Toernooizeges Ranking 1 Niet-ranking 23 Wereldkampioen 1972 en 1982 Portaal    Sport Alexander Gordon Higgins (Belfast, 18 maart 1949 – aldaar, 24 juli 2010) was een snookerspeler uit Noord-Ierland. Higgins nam tijdens het World Snooker Championship 1972 vo...

 

Uncharted: The Lost Legacy Uncharted: The Lost Legacy Desenvolvedora(s) Naughty Dog Publicadora(s) Sony InteractiveEntertainment Diretor(es) Kurt MargenauShaun Escayg Projetista(s) James Cooper Escritor(es) Shaun EscaygJosh Scherr Programador(es) Travis McIntoshChristian GyrlingJason GregorySandeep ShekarVincent Marxen Artista(s) Tate MosesianErick PangilinanAndrew Maximov Compositor(es) Henry Jackman Série Uncharted Plataforma(s) PlayStation 4PlayStation 5Microsoft Windows Lançamento PlayS...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Politeknik Kelautan Dan Perikanan(Poltek KP) adalah Salah satu perguruan tinggi dibawah naungan Kementrian KKP, yang mana sebelum menjadi Politeknik adalah Sekolah yang setara dengan SMA/SMK Yaitu SUPM(Sekolah Usaha Perikanan Menengah). Poltek KP Pari...

 

セルゲイ・グリゴリエヴィッチ・エリセーエフ人物情報生誕 (1889-01-13) 1889年1月13日 ロシアサンクトペテルブルク→ フランス死没 1975年4月13日(1975-04-13)(86歳)出身校 東京帝国大学子供 ニキータ・エリセーエフ(中東学)学問研究分野 東洋学・言語学研究機関 ハーバード大学・ソルボンヌ大学テンプレートを表示 セルゲイ・グリゴリエヴィッチ・エリセーエフ(ロシア語&...

 

У Вікіпедії є статті про інших людей із таким прізвищем: Шарапова. Ганна Шарапова Га́нна Микола́їна Шара́пова (*1863—†1923) — російська діячка міжнародного руху есперанто та вегетаріанства, перекладач. Невістка Павла Івановича Бірюкова — секретаря Льва Толстого. Пер...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. المعلق الرئيسي أرسينيو كانيادا (في الوسط) يقدم لعبة كرة السلة بين سي بي إستوديانتس وبالونكيستو مالقا بمساعدة اثنين من معلقي اللون: مانيل كوماس (على اليسار)، المدرب السابق، وخ...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Horeka adalah istilah yang dipakai di negara-negara Skandinavia, Beneluks, dan Prancis untuk menyebut sektor pada industri makanan yang terdiri atas tempat-tempat yang menyiapkan dan melayani makanan dan minuman. Istilah ini merupakan akronim dari hote...

 

أمازيغية حوض الشلفمحلية فيالجزائرمنطقةولاية الشلفأسرة اللغاتأفريقية آسيوية أمازيغيةشماليةزناتيةزناتية جزائرية غربيةأمازيغية حوض الشلفترميز اللغةأيزو 639-3–أمازيغية الشلف أو أمازيغية حوض الشلف هي مجموعة لهجات أمازيغية يُتَحَدَّثُ بها في بعض المناطق بولاية الشلف في...

French politician Michel BuillardMayor of PapeeteIncumbentAssumed office 24 June 1995Preceded byLouise CarlsonVice-President of French PolynesiaIn officeApril 1991 – May 1995PresidentGaston FlossePreceded byGeorges KellySucceeded byÉdouard FritchMinister of Youth, Social Integration, Sports and Urban PolicyIn office1996–1997Minister of HealthIn office1991–1996Minister of Labour, Employment, Vocational Training and HousingIn office1984–1987Member of the French Polynesian ...

 

Nº 1 do Ranking WTA Desporto Ténis Organização Associação do Ténis Feminino Fundação 1975 Nº 1 do Mundo Nº 1 Iga Swiatek Desde 7 de Novembro de 2023 Esta lista contém as Tenistas Número 1 do Mundo no Ranking WTA de singulares. Iga Swiatek, representando a Polónia é, desde 7 de Novembro de 2023, a actual número 1 do Mundo. É a primeira polaca a alcançar a liderança do ranking mundial. Desde 1975 um total de 29 tenistas ascenderam à liderança do ranking mundial da WTA, das ...

 

Lukas 23Lukas 23:14-26 pada Kitab Injil bercorak tulisan Carolingian minuscule (folio 160v; British Library, MS Add. 11848).KitabInjil LukasKategoriInjilBagian Alkitab KristenPerjanjian BaruUrutan dalamKitab Kristen3← pasal 22 pasal 24 → |right|thumb|150px|]] Lukas 23 (disingkat Luk 23) adalah pasal kedua puluh tiga Injil Lukas pada Perjanjian Baru dalam Alkitab Kristen. Disusun oleh Lukas, seorang Kristen yang merupakan teman seperjalanan Rasul Paulus.[1][2] Teks ...

Barbara WaltersWalters vào tháng 6 năm 2011tại thành phố New YorkSinhBarbara Jill Walters(1929-09-25)25 tháng 9, 1929Boston, Massachusetts, Hoa KỳMất30 tháng 12 năm 2022(2022-12-30) (93 tuổi)Thành phố New York, Hoa KỳNghề nghiệpNhà báoTác phẩm nổi bật Today (1962–76) ABC Evening News (1976–78) 20/20 (1979–2004) The View sáng lập/đồng MC (1997–2014) sản xuất (1997–2022) Tiền lương$12 triệu (2007)[1]Phối ...

 

Maharana of Mewar from 1652–1680 Raj Singh IMaharana of MewarRaj Singh IMaharana of MewarReign1652–1680PredecessorJagat Singh ISuccessorJai SinghBorn(1629-09-24)24 September 1629Died22 October 1680(1680-10-22) (aged 51)SpouseHadiji Khuman Kanwarji of Bundi Rathorji Anand Kanwarji of Idar Parmarji Ramras Kanwarji of Bijolia in Mewar Chauhanji Jag Kanwarji of Bedla in Mewar Jhaliji Roop Kanwarji of Lakhtar in Gujarat Solankiniji Aas Kanwarji of Veerpur Lunawada in Gujarat Rathorji Char...

 

2019 film directed by Hiro Murai Guava IslandPosterDirected byHiro MuraiScreenplay byStephen GloverStory by Donald Glover Stephen Glover Ibra Ake Jamal Olori Fam Udeorji Produced by Donald Glover Fam Udeorji Carmen Cuba Jennifer Roth Starring Donald Glover Rihanna Nonso Anozie Letitia Wright CinematographyChristian SprengerEdited byIsaac HagyMusic byMichael UzowuruProductioncompany Regency Enterprises Distributed byAmazon StudiosRelease dates April 11, 2019 (2019-04-11) (Co...

2018 American filmThe Holiday CalendarFilm posterDirected byBradley WalshWritten byAmyn KaderaliProduced byBrad KrevoyStarring Kat Graham Quincy Brown Ethan Peck Ron Cephas Jones CinematographyPeter BenisonEdited byGordon McClellanMusic bySean Nimmons-PatersonProductioncompanyMPCADistributed byNetflixRelease date November 2, 2018 (2018-11-02) Running time95 minutesCountryUnited StatesLanguageEnglish The Holiday Calendar is a 2018 American Christmas romantic comedy film directed...

 

Festival Internacional de Circo de Montecarlo LocalizaciónPaís  MónacoDatos generalesTipo festivalSede FontvieilleHistóricoPrimer evento 1974Duración 10 díasSitio web oficial[editar datos en Wikidata] El Festival Internacional del Circo de Montecarlo (en francés, Festival International du Cirque de Monte-Carlo) es un evento anual de circo, que tiene lugar cada mes de enero, durante diez días, en Montecarlo. Congrega a los mejores artistas circenses internacionales y es ...

 

Tropical solar phenomenon A level photographed during Lāhainā Noon in Hawaiʻi Lāhainā Noon is a semi-annual tropical solar phenomenon when the Sun culminates at the zenith at solar noon, passing directly overhead (above the subsolar point).[1] The term lāhainā noon was coined by the Bishop Museum in Hawaiʻi.[2] Details The subsolar point at Honolulu during Lahaina Noon with the range of possible subsolar points shaded in purple – the angle between the Sun and the...

قرية الطفه ( الحكومة )  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة البيضاء المديرية مديرية الطفة العزلة عزلة الظفرين السكان التعداد السكاني 2004 السكان 134   • الذكور 73   • الإناث 61   • عدد الأسر 17   • عدد المساكن 20 معلومات أخرى التوقيت توقيت اليمن (...

 

アメリカ海軍(右。マイケル・マレン大将)とナイジェリア軍(左、オウワイ・アンドリュー・アザジ参謀総長)の将官。両者とも左胸に略綬を着けているが、並べ方が異なっている。略綬の形状や装着法も国(国によっては個人)によって異なる。 略綬(りゃくじゅ)は、勲章・記章の受章者がそれらを佩用しないときに受章歴を示すために着用する綬(リボン)で...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!