ZFK equation

ZFK equation, abbreviation for Zeldovich–Frank-Kamenetskii equation, is a reaction–diffusion equation that models premixed flame propagation. The equation is named after Yakov Zeldovich and David A. Frank-Kamenetskii who derived the equation in 1938 and is also known as the Nagumo equation.[1][2] The equation is analogous to KPP equation except that is contains an exponential behaviour for the reaction term and it differs fundamentally from KPP equation with regards to the propagation velocity of the traveling wave. In non-dimensional form, the equation reads

with a typical form for given by

where is the non-dimensional dependent variable (typically temperature) and is the Zeldovich number. In the ZFK regime, . The equation reduces to Fisher's equation for and thus corresponds to KPP regime. The minimum propagation velocity (which is usually the long time asymptotic speed) of a traveling wave in the ZFK regime is given by

whereas in the KPP regime, it is given by

Traveling wave solution

Numerical solution of ZFK equation

Similar to Fisher's equation, a traveling wave solution can be found for this problem. Suppose the wave to be traveling from right to left with a constant velocity , then in the coordinate attached to the wave, i.e., , the problem becomes steady. The ZFK equation reduces to

satisfying the boundary conditions and . The boundary conditions are satisfied sufficiently smoothly so that the derivative also vanishes as . Since the equation is translationally invariant in the direction, an additional condition, say for example , can be used to fix the location of the wave. The speed of the wave is obtained as part of the solution, thus constituting a nonlinear eigenvalue problem.[3] Numerical solution of the above equation, , the eigenvalue and the corresponding reaction term are shown in the figure, calculated for .

Asymptotic solution[4]

The ZFK regime as is formally analyzed using activation energy asymptotics. Since is large, the term will make the reaction term practically zero, however that term will be non-negligible if . The reaction term will also vanish when and . Therefore, it is clear that is negligible everywhere except in a thin layer close to the right boundary . Thus the problem is split into three regions, an inner diffusive-reactive region flanked on either side by two outer convective-diffusive regions.

Outer region

The problem for outer region is given by

The solution satisfying the condition is . This solution is also made to satisfy (an arbitrary choice) to fix the wave location somewhere in the domain because the problem is translationally invariant in the direction. As , the outer solution behaves like which in turn implies

The solution satisfying the condition is . As , the outer solution behaves like and thus .

We can see that although is continuous at , has a jump at . The transition between the derivatives is described by the inner region.

Inner region

In the inner region where , reaction term is no longer negligible. To investigate the inner layer structure, one introduces a stretched coordinate encompassing the point because that is where is approaching unity according to the outer solution and a stretched dependent variable according to Substituting these variables into the governing equation and collecting only the leading order terms, we obtain

The boundary condition as comes from the local behaviour of the outer solution obtained earlier, which when we write in terms of the inner zone coordinate becomes and . Similarly, as . we find . The first integral of the above equation after imposing these boundary conditions becomes

which implies . It is clear from the first integral, the wave speed square is proportional to integrated (with respect to ) value of (of course, in the large limit, only the inner zone contributes to this integral). The first integral after substituting is given by

KPP–ZFK transition

Black line: Numreically computed ; Red line: ; Blue line: .

In the KPP regime, For the reaction term used here, the KPP speed that is applicable for is given by[5]

whereas in the ZFK regime, as we have seen above . Numerical integration of the equation for various values of showed that there exists a critical value such that only for , For , is greater than . As , approaches thereby approaching the ZFK regime. The region between the KPP regime and the ZFK regime is called the KPP–ZFK transition zone.

The critical value depends on the reaction model, for example we obtain

Clavin–Liñán model

To predict the KPP–ZFK transition analytically, Paul Clavin and Amable Liñán proposed a simple piecewise linear model[6]

where and are constants. The KPP velocity of the model is , whereas the ZFK velocity is obtained as in the double limit and that mimics a sharp increase in the reaction near .

For this model there exists a critical value such that

See also

References

  1. ^ Zeldovich, Y. B., & Frank-Kamenetskii, D. A. (1938). The theory of thermal propagation of flames. Zh. Fiz. Khim, 12, 100-105.
  2. ^ Biktashev, V.N.; Idris, I. (2008). "Initiation of excitation waves: An analytical approach". 2008 Computers in Cardiology. pp. 311–314. doi:10.1109/CIC.2008.4749040. ISBN 978-1-4244-3706-1. S2CID 15607806.
  3. ^ Evans, L. C. (2010). Partial differential equations (Vol. 19). American Mathematical Soc.
  4. ^ Williams, F. A. (2018). Combustion theory. CRC Press.
  5. ^ Clavin, P., & Searby, G. (2016). Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars. Cambridge University Press.
  6. ^ Clavin, P., & Liñán, A. (1984). Theory of gaseous combustion. In Nonequilibrium Cooperative Phenomena in Physics and Related Fields (pp. 291-338). Springer, Boston, MA.

Read other articles:

花嫁衣裳は誰が着るジャンル テレビドラマ原作 細川智栄子「あこがれ」企画 春日千春、重村一脚本 長野洋、林さわこ、佐々木守監督 土屋統吾郎、岡本弘、竹本弘一、米山紳出演者 堀ちえみ伊藤かずえ松村雄基原知佐子梶芽衣子名古屋章織本順吉初井言榮 ほかオープニング 椎名恵「愛は眠らない」エンディング 同上製作プロデューサー 柳田博美、千原博司(大映テレ

 

U.S. government position United StatesAssistant Secretary of Statefor International Security and NonproliferationSeal of the United States Department of StateIncumbentC.S. Eliot Kangsince March 31, 2022Reports toUnder Secretary of State for Arms Control and International Security AffairsNominatorPresident of the United StatesInaugural holderStephen Rademaker (acting)Formation2005Websitewww.state.gov/t/isn/index.htm The Assistant Secretary of State for International Security and Nonprolif...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. PT ICTSI Jasa Prima TbkJenisPublik (IDX: KARW)IndustrijasaDidirikan1978KantorpusatJakarta, IndonesiaTokohkunciRomeo Andres Salvador, Presiden DirekturProdukbongkar muatPendapatan USD 7,9 juta (2017) USD 6,32 juta (2018) Laba bersih USD 2,42 juta (2017...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2017) كازو موري (باليابانية: 森一生)‏    معلومات شخصية الميلاد 15 يناير 1911  ماتسوياما، إهيمه  تاريخ الوفاة 29 يونيو 1989 (78 سنة)   الجنسية اليابان الحياة الع...

 

Akademia Sztuki w SzczecinieAcademy of Art in Szczecin Pałac „Pod Globusem” w Szczecinie (2022) Data założenia 2010 Państwo  Polska Województwo  zachodniopomorskie Adres pl. Orła Białego 270-562 Szczecin Liczba studentów 760 Rektor dr hab. Mirosława Jarmołowicz Położenie na mapie SzczecinaAkademia Sztuki w Szczecinie Położenie na mapie PolskiAkademia Sztuki w Szczecinie Położenie na mapie województwa zachodniopomorskiegoAkademia Sztuki w Szczecinie 53°25′34,36

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) هاري لوران معلومات شخصية الميلاد 15 أبريل 1895  إقليم تاراناكي  الوفاة 9 ديسمبر 1987 (92 سنة)   هاستينجس، نيوزيلندا  مواطنة نيوزيلندا  الحياة العملية الم

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Verny (Begriffsklärung) aufgeführt. Verny Verny (Frankreich) Staat Frankreich Region Grand Est Département (Nr.) Moselle (57) Arrondissement Metz Kanton Faulquemont Gemeindeverband Sud Messin Koordinaten 49° 0′ N, 6° 12′ O49.0072222222226.2033333333333Koordinaten: 49° 0′ N, 6° 12′ O Höhe 172–246 m Fläche 3,9 km² Einwohner 1.981 (1. Januar 2020) Bevölk...

 

Artikel ini bukan mengenai Berakhah atau Berakhot (Talmud). Ulangan 32:50–33:29 dalam Kodeks Aleppo V'Zot HaBerachah, VeZos HaBerachah, VeZot Haberakha, V'Zeis Habrocho, V'Zaus Haberocho, V'Zois Haberuchu, atau Zos Habrocho (וְזֹאת הַבְּרָכָה – Ibrani untuk dan ini adalah berkat, kata-kata pertama dalam parsyah tersebut) adalah Bacaan Taurat Mingguan (פָּרָשָׁה, parashah) ke-54 dan terakhir dalam siklus bacaan Taurat Yahudi tahunan dan ke-11 dan terakhir dalam Kit...

 

History of New York City rapid transit (1899–1940) Brooklyn Union Elevated RailroadNew York Consolidated RailroadNew York Rapid Transit CorporationOverviewHeadquartersBrooklyn, NYLocaleNew York CityDates of operation1899 – 1907 (B'klyn Heights RR)1907 – 1912 (B'klyn Union El. RR)1912 – 1923 (NY Consol. RR)1923–1940 (NYRT Corp.)TechnicalTrack gauge4 ft 8+1⁄2 in (1,435 mm) standard gauge Starti...

Artikel ini bukan mengenai Miss Korea. Miss Grand KoreaLogo Miss GrandTanggal pendirian2017TipeKontes kecantikanKantor pusatSeoulLokasi Korea SelatanJumlah anggota Miss Grand InternationalBahasa resmi KoreaPresidenKim Ho-seongSitus webwww.missgrandkorea.co.kr Park Serim, Miss Grand Korea 2019 Miss Grand Korea (bahasa Korea: 미스 그랜드 코리아) adalah kontes kecantikan di Korea Selatan yang diselenggarakan sejak tahun 2017 oleh 1L2H company yang diketuai oleh seorang pengusaha...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (يوليو 2019) منتخب إيران تحت 23 سنة لكرة الطائرة للرجال كونفدرالية الاتحاد الآسيوي لكرة الطائ

 

Species of fish Finless sole Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Pleuronectiformes Family: Soleidae Genus: Pardachirus Species: P. marmoratus Binomial name Pardachirus marmoratus(Lacépède, 1802) Synonyms Achirus marmoratus Lacepède, 1802 Achirus barbatus Lacepède, 1802 Achirus punctatus Desjardins, 1837 Pardachirus marmoratus, the finless sole, speckled sole or Red Sea Moses sole,[1] is a species of flatf...

301st Maneuver Enhancement BrigadeGroup insigniaActive2008-Country United StatesBranchUnited States Army ReserveSizeBrigadePart of416th Theater Engineer CommandHeadquartersJoint Base Lewis-McChord, WashingtonMilitary unit 301st Maneuver Enhancement Brigade is a United States Army Reserve unit based in Joint Base Lewis-McChord, Washington. The Maneuver Enhancement Brigade is a brigade size headquarters with a modular organization that is designed to provide support to the combatant c...

 

此條目没有列出任何参考或来源。 (2020年5月7日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 奥得河畔科斯琴Kostrzyn nad OdrąKüstrin an der Oder城市 旗幟徽章奥得河畔科斯琴奥得河畔科斯琴在波蘭的位置坐标:52°35′18″N 14°40′00″E / 52.58833°N 14.66667°E / 52.58833; 14.66667坐标:52°35′1...

 

Ken Watanabe Ken Watanabe (渡辺 謙code: ja is deprecated , Watanabe Ken, lahir 21 Oktober 1959) adalah seorang pemeran berkebangsaan Jepang yang memenangkan nominasi Academy Award. Dia berkarier di dunia film sejak tahun 1984. Filmografi Film Tahun Judul Peran Catatan 1984 MacArthur's Children Tetsuo Nakai 1985 Kekkon Annai Mystery Funayama Tetsuya / Masakazu Sekine Tampopo Gun 1986 The Sea and Poison Toda 1998 Welcome Back, Mr. McDonald Raita Onuki, sopir truk Kizuna Detective Sako Akio 2...

يوسف وزينب الصنف دراما الموضوع بعد فشل علاقة حب يوسف من زميلته أميرة يقرر السفر للعمل في جزيرة مالديف حيث يقع في حب فتاة هندية هناك تاريخ الصدور يناير 1984 مدة العرض 117 دقيقة البلد مالديف - مصر اللغة الأصلية اللغة العربية (اللهجة المصرية) اللغة الديفيهية (لغة أهل مالديف) مواقع ...

 

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (January 2016) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Surya Sen Park – news · newspapers · books · scholar · JSTOR (July 2013) (Learn how and...

 

Island in Chile Aracena IslandNative name: Isla AracenaAracena Island, at the Strait of MagellanGeographyCoordinates54°10′S 71°20′W / 54.167°S 71.333°W / -54.167; -71.333Area1,164 km2 (449 sq mi)Coastline457 km (284 mi)Highest elevation1,158 m (3799 ft)Highest pointMonte Vernal[1]AdministrationChileRegionMagallanes RegionProvinceMagallanes ProvinceCommunes of ChilePunta ArenasAdditional informationNGA UFI -87...

English churchman Ridgeway as Bishop of Chichester Charles John Ridgeway (14 July 1841 – 28 February 1927) was an English churchman, the Bishop of Chichester from 1908 to 1919.[1] Life Ridgeway was born into an ecclesiastical family: his father Joseph Ridgeway was Vicar of Christ Church, Tunbridge Wells;[2] his younger brother of Frederick became Bishop of Salisbury. He was educated at St Paul's School, and matriculated in 1860 at Trinity College, Cambridge, gra...

 

American actress and former model Alana StewartStewart in 2023BornAlana Kaye Collins (1945-05-18) May 18, 1945 (age 78)San Diego, California, U.S.Other namesAlana Collins-HamiltonAlana HamiltonOccupation(s)Actress, model, producer, authorSpouses George Hamilton ​ ​(m. 1972; div. 1975)​ Rod Stewart ​ ​(m. 1979; div. 1984)​ ChildrenAshley HamiltonKimberly StewartSean StewartModeling informa...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!