Wigner distribution function

WDF (in red and yellow) vs FIR bank (in green) time-frequency distribution analysis.

The Wigner distribution function (WDF) is used in signal processing as a transform in time-frequency analysis.

The WDF was first proposed in physics to account for quantum corrections to classical statistical mechanics in 1932 by Eugene Wigner, and it is of importance in quantum mechanics in phase space (see, by way of comparison: Wigner quasi-probability distribution, also called the Wigner function or the Wigner–Ville distribution).

Given the shared algebraic structure between position-momentum and time-frequency conjugate pairs, it also usefully serves in signal processing, as a transform in time-frequency analysis, the subject of this article. Compared to a short-time Fourier transform, such as the Gabor transform, the Wigner distribution function provides the highest possible temporal vs frequency resolution which is mathematically possible within the limitations of the uncertainty principle. The downside is the introduction of large cross terms between every pair of signal components and between positive and negative frequencies, which makes the original formulation of the function a poor fit for most analysis applications. Subsequent modifications have been proposed which preserve the sharpness of the Wigner distribution function but largely suppress cross terms.

Mathematical definition

There are several different definitions for the Wigner distribution function. The definition given here is specific to time-frequency analysis. Given the time series , its non-stationary auto-covariance function is given by

where denotes the average over all possible realizations of the process and is the mean, which may or may not be a function of time. The Wigner function is then given by first expressing the autocorrelation function in terms of the average time and time lag , and then Fourier transforming the lag.

So for a single (mean-zero) time series, the Wigner function is simply given by

The motivation for the Wigner function is that it reduces to the spectral density function at all times for stationary processes, yet it is fully equivalent to the non-stationary autocorrelation function. Therefore, the Wigner function tells us (roughly) how the spectral density changes in time.

Time-frequency analysis example

Here are some examples illustrating how the WDF is used in time-frequency analysis.

Constant input signal

When the input signal is constant, its time-frequency distribution is a horizontal line along the time axis. For example, if x(t) = 1, then

Sinusoidal input signal

When the input signal is a sinusoidal function, its time-frequency distribution is a horizontal line parallel to the time axis, displaced from it by the sinusoidal signal's frequency. For example, if x(t) = e i2πkt, then

Chirp input signal

When the input signal is a linear chirp function, the instantaneous frequency is a linear function. This means that the time frequency distribution should be a straight line. For example, if

,

then its instantaneous frequency is

and its WDF

Delta input signal

When the input signal is a delta function, since it is only non-zero at t=0 and contains infinite frequency components, its time-frequency distribution should be a vertical line across the origin. This means that the time frequency distribution of the delta function should also be a delta function. By WDF

The Wigner distribution function is best suited for time-frequency analysis when the input signal's phase is 2nd order or lower. For those signals, WDF can exactly generate the time frequency distribution of the input signal.

Boxcar function

,

the rectangular function

Cross term property

The Wigner distribution function is not a linear transform. A cross term ("time beats") occurs when there is more than one component in the input signal, analogous in time to frequency beats.[1] In the ancestral physics Wigner quasi-probability distribution, this term has important and useful physics consequences, required for faithful expectation values. By contrast, the short-time Fourier transform does not have this feature. Negative features of the WDF are reflective of the Gabor limit of the classical signal and physically unrelated to any possible underlay of quantum structure.

The following are some examples that exhibit the cross-term feature of the Wigner distribution function.

In order to reduce the cross-term difficulty, several approaches have been proposed in the literature,[2][3] some of them leading to new transforms as the modified Wigner distribution function, the Gabor–Wigner transform, the Choi-Williams distribution function and Cohen's class distribution.

Properties of the Wigner distribution function

The Wigner distribution function has several evident properties listed in the following table.

Projection property
Energy property
Recovery property
Mean condition frequency and mean condition time
Moment properties
Real properties
Region properties
Multiplication theorem
Convolution theorem
Correlation theorem
Time-shifting covariance
Modulation covariance
Scale covariance

Windowed Wigner Distribution Function

When a signal is not time limited, its Wigner Distribution Function is hard to implement. Thus, we add a new function(mask) to its integration part, so that we only have to implement part of the original function instead of integrating all the way from negative infinity to positive infinity.

Original function:

Function with mask:

where is real and time-limited

Implementation

According to definition:
Suppose that for for and
We take as example
where is a real function
And then we compare the difference between two conditions.
Ideal:
When mask function , which means no mask function.

3 Conditions

Then we consider the condition with mask function:
We can see that have value only between –B to B, thus conducting with can remove cross term of the function. But if x(t) is not a Delta function nor a narrow frequency function, instead, it is a function with wide frequency or ripple. The edge of the signal may still exist between –B and B, which still cause the cross term problem.
for example:

See also

References

  1. ^ F. Hlawatsch and P. Flandrin, "The interference structure of the Wigner distribution and related time-frequency signal representations", in W. Mecklenbräuker and F. Hlawatsch, The Wigner Distribution - Theory and Applications in Signal Processing
  2. ^ B. Boashah (Ed.), Time Frequency Signal Analysis and Processing, Elsevier, 2003
  3. ^ P. Flandrin, Time-Frequency/Time-Scale Analysis, Elsevier, 1998

Further reading

  • Wigner, E. (1932). "On the Quantum Correction for Thermodynamic Equilibrium" (PDF). Physical Review. 40 (5): 749–759. Bibcode:1932PhRv...40..749W. doi:10.1103/PhysRev.40.749. hdl:10338.dmlcz/141466.
  • J. Ville, 1948. "Théorie et Applications de la Notion de Signal Analytique", Câbles et Transmission, 2, 61–74 .
  • T. A. C. M. Classen and W. F. G. Mecklenbrauker, 1980. "The Wigner distribution-a tool for time-frequency signal analysis; Part I," Philips J. Res., vol. 35, pp. 217–250.
  • L. Cohen (1989): Proceedings of the IEEE 77 pp. 941–981, Time-frequency distributions---a review
  • L. Cohen, Time-Frequency Analysis, Prentice-Hall, New York, 1995. ISBN 978-0135945322
  • S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Chap. 5, Prentice Hall, N.J., 1996.
  • B. Boashash, "Note on the Use of the Wigner Distribution for Time Frequency Signal Analysis", IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 36, No. 9, pp. 1518–1521, Sept. 1988. doi:10.1109/29.90380. B. Boashash, editor,Time-Frequency Signal Analysis and Processing – A Comprehensive Reference, Elsevier Science, Oxford, 2003, ISBN 0-08-044335-4.
  • F. Hlawatsch, G. F. Boudreaux-Bartels: "Linear and quadratic time-frequency signal representation," IEEE Signal Processing Magazine, pp. 21–67, Apr. 1992.
  • R. L. Allen and D. W. Mills, Signal Analysis: Time, Frequency, Scale, and Structure, Wiley- Interscience, NJ, 2004.
  • Jian-Jiun Ding, Time frequency analysis and wavelet transform class notes, the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2015.
  • Kakofengitis, D., & Steuernagel, O. (2017). "Wigner's quantum phase space current in weakly anharmonic weakly excited two-state systems" European Physical Journal Plus 14.07.2017

Read other articles:

Bagian dari seriPendidikan di Indonesia Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia Pendidikan anak usia dini TK RA KB Pendidikan dasar (kelas 1–6) SD MI Paket A Pendidikan dasar (kelas 7–9) SMP MTs Paket B Pendidikan menengah (kelas 10–12) SMA MA SMK MAK SMA SMTK SMAK Utama Widya Pasraman Paket C Pendidikan tinggi Perguruan tinggi Akademi Akademi komunitas Institut Politeknik Sekolah tinggi Universitas Lain-lain Madrasah Pesantren Sekolah alam Sekolah ru...

 

Cet article est une ébauche concernant une localité néerlandaise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Maurik Héraldique Drapeau Administration Pays Pays-Bas Commune Buren Province Gueldre Code postal 4020-4021 Indicatif téléphonique international +(31) Démographie Population 3 500 hab. Géographie Coordonnées 51° 57′ 36″ nord, 5° 25′ 25″ est Lo...

 

Putri Twilight SparkleTokoh My Little Pony: Friendship Is Magic dan My Little Pony: Equestria Girls Atas: Twilight Sparkle dari Friendship Is Magic dari episode Twilight's Kingdom Bawah: Wujud manusia dari film Equestria Girls PenampilanperdanaFriendship is Magic (2010)PenampilanterakhirThe Last Problem (2019)PenciptaLauren FaustDidasarkandariG1 Twilightoleh Bonnie Zacherle[1]Pengisi suara Tara Strong Rebecca Shoichet (bernyanyi) InformasiAlias Mare Do Well Masked Matter-Horn Purple R...

Mary de Bohun Mary de Bohun ((ca. 1369/70 — Petersborough Castle, Northamptonshire, 4 juni 1394) was de eerste vrouw van koning Hendrik IV van Engeland en de moeder van koning Hendrik V. Mary zelf was nooit koningin, na haar dood kwam haar man op de troon. Leven Mary’s vader, Humphrey de Bohun, stierf op 16 januari 1373. Er was geen zoon die hem kon opvolgen. Zijn bezittingen werden dus verdeeld tussen zijn twee dochters, Mary en Eleanor de Bohun. Zij waren de pupillen van Edward III. Ele...

 

Palmira FMLocalización Nueva PalmiraÁrea de radiodifusión Nueva Palmira y zonas aledañasEslogan La ComunitariaFrecuencia 89.1 FMPrimera emisión 4 de octubre de 2008 (15 años)Formato ComunitariaIdioma EspañolIndicativo CXC206-FAfiliación AMARCPropietario Voces Alternativas de Nueva Palmira (Sociedad Civil)Sitio web www.palmirafm.com.uy[editar datos en Wikidata] Palmira FM La Comunitaria es una radio comunitaria que transmite desde la ciudad de Nueva Palmira, al suroeste ...

 

ساولتشوي    شعار الاسم الرسمي (بالفرنسية: Saulchoy)‏    الإحداثيات 50°20′57″N 1°50′59″E / 50.349166666667°N 1.8497222222222°E / 50.349166666667; 1.8497222222222[1]  [2] تقسيم إداري  البلد فرنسا[3]  التقسيم الأعلى باد كاليه  خصائص جغرافية  المساحة 5.29 كيلومتر مربع[1]&#...

For the U2 song, see I'll Go Crazy If I Don't Go Crazy Tonight. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Go Crazy Young Jeezy song – news · newspapers · books · scholar · JSTOR (September 2019) (Learn how and when to remove this template message) 2005 single by Young Jeezy featuring Jay-ZGo Crazy...

 

Lighthouse in New South Wales, Australia LighthouseRobertson Point Light Robertson Point LightLocationCremorne PointNew South Wales AustraliaCoordinates33°50′55.62″S 151°13′58.85″E / 33.8487833°S 151.2330139°E / -33.8487833; 151.2330139TowerConstructed1910FoundationrockHeight26 feet (7.9 m)Shapecylindrical tower with balcony and lanternMarkingswhite tower and lanternOperatorPort Authority of New South WalesLightFocal height25 feet (7.6 m)Range...

 

Historic government building in Indiana, United States United States historic placeOrange County CourthouseU.S. National Register of Historic Places Southern front of the courthouseShow map of IndianaShow map of the United StatesLocationPublic Sq., Paoli, IndianaCoordinates38°33′23″N 86°28′7″W / 38.55639°N 86.46861°W / 38.55639; -86.46861Area1 acre (0.40 ha)Built1847ArchitectMultipleArchitectural styleGreek RevivalNRHP reference No.75000...

Inter Miami CFNama lengkapClub Internacional de Fútbol MiamiNama singkatInter MiamiStadionDRV PNK StadiumFort Lauderdale, Florida(Kapasitas: 18,000[1][2])PemilikDavid BeckhamHammadiJose MasPresidenDavid BeckhamPelatih kepalaGerardo Martino (Interim)LigaMajor League Soccer2023Wilayah Timur MLS: ke-6Keseluruhan: ke-12Playoff: Putaran PertamaSitus webSitus web resmi klub Kostum kandang Kostum tandang Musim ini Club Internacional de Fútbol Miami, dikenal dalam bahasa Inggri...

 

南斯拉夫國旗(1961–1991)國旗(1992)EBU會員南斯拉夫廣播電視國內初選方式 國內選拔 南斯拉夫歌唱大賽(英语:Jugovizija) 1961–1972 1981–1984 1986–1992 奧帕蒂亞音樂會 1973–1976 主辦1990年薩格勒布參賽參賽次數27最初參賽1961年最近參賽1992年最佳名次第一名: 1989年0分1964年外部連結Eurovision.tv上的南斯拉夫頁面 南斯拉夫參加了歐洲歌唱大賽,共27次,於1961年首次亮相,每年比賽直...

 

Ambassador of the United States to South SudanSeal of the United States Department of StateIncumbentMichael J. Adlersince August 24, 2022NominatorThe President of the United StatesInaugural holderSusan Pageas AmbassadorFormationJuly 9, 2011WebsiteU.S. Embassy – Juba The United States ambassador to South Sudan is the official representative of the president of the United States to the head of state of the Republic of South Sudan. The government of the United States recognized South Suda...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of alcohol laws of the United States – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this template message) Beer at a Walmart in Kissimmee, Florida. Some states permit alcoholic beverages to be sold at all stores...

 

For the MC 900 Ft. Jesus song, see One Step Ahead of the Spider. If I Only Had a Brain (also If I Only Had a Heart and If I Only Had the Nerve) is a song by Harold Arlen (music) and Yip Harburg (lyrics). The song is sung in the 1939 film The Wizard of Oz by the character Scarecrow, played by Ray Bolger, when he meets Dorothy, played by Judy Garland. The characters pine about what each wants from the Wizard. It was also sung in Jeremy Sams and Andrew Lloyd Webber's 2011 musical adaptation with...

 

Ця стаття містить перелік посилань, але походження тверджень у ній залишається незрозумілим через практично повну відсутність внутрішньотекстових джерел-виносок. Будь ласка, допоможіть поліпшити цю статтю, перетворивши джерела з переліку посилань на джерела-виноски у...

One of the South Orkney Islands in the Southern Ocean Haralambiev IslandMap of the South Orkney IslandsHaralambiev IslandLocation of Haralambiev IslandGeographyLocationAntarcticaCoordinates60°35′44″S 46°04′38″W / 60.59556°S 46.07722°W / -60.59556; -46.07722ArchipelagoSouth Orkney IslandsArea13 ha (32 acres)Length530 m (1740 ft)Width300 m (1000 ft)AdministrationAdministered under the Antarctic Treaty SystemDemographicsPopulationuninh...

 

2012 studio album by Christine AnuRewind: The Aretha Franklin SongbookStudio album by Christine AnuReleased3 August 2012GenreSoul music, Pop musicLabelChristine Anu, MGM RecordsProducerChristine AnuChristine Anu chronology Intimate and Deadly(2010) Rewind: The Aretha Franklin Songbook(2012) Island Christmas(2014) Rewind: The Aretha Franklin Songbook is the sixth studio and first tribute album by ARIA Award winning, Torres Strait Islander singer Christine Anu. The album and tour were a...

 

Cecilia Biagioli Datos personalesNombre completo Cecilia Elizabeth BiagioliApodo(s) Chechu[1]​Nacimiento Córdoba, Argentina3 de enero de 1985 (38 años)Nacionalidad(es) argentinaAltura 1,68 m (5′ 6″)Peso 54 kg (119 lb)Carrera deportivaDeporte NataciónEstilo LibreClub River PlateEntrenador Claudio Biagioli[2]​               Medallero Competidora por  Argentina Juegos Panamericanos O...

This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (May 2022) Sudanese warlord Musa Hilalموسى هلالBorn1961 (age 61–62)[1]Political partyJanjaweed, National Congress Party (until 2014), Sudanese Awakening Revolutionary Council (2014–present)[2]ChildrenAmani Musa Hilal Musa Hilal (Arabic: موسى هلال, romanized: Mūsa Hilāl) is a Sudanese Arab tribal chief and m...

 

Disambiguazione – Se stai cercando la teoria geopolitica statunitense del XIX secolo, vedi Destino manifesto. Manifest Destinyfumetto Disegni di Greg Land. Titolo orig.Manifest Destiny Lingua orig.inglese PaeseStati Uniti EditoreMarvel Comics Collana 1ª ed. Astonishing X-Men (vol. 3[1]) Cable (vol. 2) Eternals (vol. 4) Runaways (vol. 3) Secret Invasion: X-Men Uncanny X-Men (vol. 1) Wolverine: Manifest Destiny X-Men: Legacy (vol. 1) X-Men: Manifest Destiny X...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!