Weyl's lemma (Laplace equation)

In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.

Statement of the lemma

Let be an open subset of -dimensional Euclidean space , and let denote the usual Laplace operator. Weyl's lemma[1] states that if a locally integrable function is a weak solution of Laplace's equation, in the sense that

for every test function (smooth function with compact support) , then (up to redefinition on a set of measure zero) is smooth and satisfies pointwise in .

This result implies the interior regularity of harmonic functions in , but it does not say anything about their regularity on the boundary .

Idea of the proof

To prove Weyl's lemma, one convolves the function with an appropriate mollifier and shows that the mollification satisfies Laplace's equation, which implies that has the mean value property. Taking the limit as and using the properties of mollifiers, one finds that also has the mean value property,[2] which implies that it is a smooth solution of Laplace's equation.[3][4] Alternative proofs use the smoothness of the fundamental solution of the Laplacian or suitable a priori elliptic estimates.

Proof

Let be the standard mollifier.

Fix a compact set and put be the distance between and the boundary of .

For each and the function

belongs to test functions and so we may consider

We assert that it is independent of . To prove it we calculate for .

Recall that

where the standard mollifier kernel on was defined at Mollifier#Concrete_example. If we put

then .

Clearly satisfies for . Now calculate

Put so that

In terms of we get

and if we set

then with for , and . Consequently

and so , where . Observe that , and

Here is supported in , and so by assumption

.

Now by considering difference quotients we see that

.

Indeed, for we have

in with respect to , provided and (since we may differentiate both sides with respect to . But then , and so for all , where . Now let . Then, by the usual trick when convolving distributions with test functions,

and so for we have

.

Hence, as in as , we get

.

Consequently , and since was arbitrary, we are done.

Generalization to distributions

More generally, the same result holds for every distributional solution of Laplace's equation: If satisfies for every , then is a regular distribution associated with a smooth solution of Laplace's equation.[5]

Connection with hypoellipticity

Weyl's lemma follows from more general results concerning the regularity properties of elliptic or hypoelliptic operators.[6] A linear partial differential operator with smooth coefficients is hypoelliptic if the singular support of is equal to the singular support of for every distribution . The Laplace operator is hypoelliptic, so if , then the singular support of is empty since the singular support of is empty, meaning that . In fact, since the Laplacian is elliptic, a stronger result is true, and solutions of are real-analytic.

Notes

  1. ^ Hermann Weyl, The method of orthogonal projections in potential theory, Duke Math. J., 7, 411–444 (1940). See Lemma 2, p. 415
  2. ^ The mean value property is known to characterize harmonic functions in the following sense. Let . Then is harmonic in the usual sense (so and if and only if for all balls we have
    where is the (n − 1)-dimensional area of the hypersphere . Using polar coordinates about we see that when is harmonic, then for ,
  3. ^ Bernard Dacorogna, Introduction to the Calculus of Variations, 2nd ed., Imperial College Press (2009), p. 148.
  4. ^ Stroock, Daniel W. "Weyl's lemma, one of many" (PDF).
  5. ^ Lars Gårding, Some Points of Analysis and their History, AMS (1997), p. 66.
  6. ^ Lars Hörmander, The Analysis of Linear Partial Differential Operators I, 2nd ed., Springer-Verlag (1990), p.110

References

Read other articles:

Ciskei جمهورية سيسكي iRiphabliki ye Ciskei بانتوستان 1981 – 1994 سيسكي (دولة)علم سيسكي (دولة)شعار الشعار الوطني : Siyakunqandwa Ziinkwenkwezi  (Xhosa)We Shall be Stopped by the Starsor The Sky is the Limit النشيد : Nkosi sikelel'i Afrika Location of Ciskei (red) within South Africa (yellow). عاصمة Bisho نظام الحكم غير محدّد اللغة الرسمية الكوسية  Chief ...

 

Danish diplomat and politician (1888–1963) Henrik KauffmannKauffmann in 1932Danish Ambassador to the United StatesIn office22 August 1939 – 1958PresidentFranklin D. RooseveltHarry S. TrumanDwight D. EisenhowerPreceded byOtto WadstedSucceeded byKjeld Gustav Knuth-Winterfeldt [da]Minister without portfolioIn office12 May 1945 – 7 November 1945Prime MinisterVilhelm Buhl Personal detailsBornHenrik Louis Hans von Kauffmann(1888-08-26)26 August 1888Frankfurt am ...

 

Basisdaten[1] Bestandszeitraum 1879–1928 Verwaltungssitz Stift Cappel Fläche 7,66 km² (1910) Einwohner 1.292 (1910) Bevölkerungsdichte 169 Einw./km² (1910) Lage der lippischen Exklaven (1905) Das Verwaltungsamt Lipperode-Cappel war von 1879 bis 1928 ein Verwaltungsbezirk des Fürstentums bzw. des Freistaats Lippe. Sein Verwaltungssitz war im Stift Cappel.[2] Inhaltsverzeichnis 1 Geschichte 2 Einwohnerentwicklung 3 Einzelnachweise 4 Weblinks Geschichte 1879 wurden im Für...

Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Oberhain (Begriffsklärung) aufgeführt. Oberhain Stadt Königsee Koordinaten: 50° 38′ N, 11° 8′ O50.63305555555611.133055555556570Koordinaten: 50° 37′ 59″ N, 11° 7′ 59″ O Höhe: 570 m ü. NN Fläche: 14,08 km² Einwohner: 214 (31. Dez. 2021)[1] Bevölkerungsdichte: 15 Einwohner/km² Eingemeindung: 1. Januar 2019 ...

 

この項目では、白線流しについて説明しています。福井県小浜市の伝統神事については「お水送り」をご覧ください。 白線流しの行われる斐太高等学校前 白線流し(はくせんながし)は、毎年、卒業式の日に卒業生たちが学帽の白線とセーラー服のスカーフを一本に結びつけ川に流す行事。例年3月1日に、岐阜県高山市にある岐阜県立斐太高等学校で、学校前を流れる大

 

Templo de Vidia Shankará. El famoso centro religioso de Sringeri, (Shringeri, Śŗngeri, Śŗngagiri, Ŗshyaśŗnga-giri), está localizado en el distrito de Chikmagalur en el estado indio de Karnataka, es el sitio de primer matha establecido por Adi Shankará, teólogo hindú y exponente de la doctrina advaita vedanta, en el siglo VIII a. C. Origen Localizado sobre las orillas del río Tunga. Según la leyenda, Adi Shankará, seleccionó el sitio como un lugar para quedarse y...

Дмитро Михайлович Карбишеврос. Дмитрий Михайлович Карбышев Народження 14 (26) жовтня 1880(1880-10-26)Омськ, Російська імперіяСмерть 18 лютого 1945(1945-02-18) (64 роки)концтабір МаутгаузенгіпотерміяКраїна Російська імперія →  СРСРПриналежність  Радянська арміяРід військ  інжене...

 

American ice hockey player Ice hockey player Kevin Mitchell Born (1980-06-05) June 5, 1980 (age 43)The Bronx, New York, USAHeight 6 ft 1 in (185 cm)Weight 194 lb (88 kg; 13 st 12 lb)Position DefenseShoots LeftAL teamFormer teams Nikko IcebucksHamilton BulldogsHouston AerosBridgeport Sound TigersCleveland BaronsIserlohn RoostersVienna CapitalsHamburg FreezersHDD Olimpija LjubljanaRapperswil-Jona LakersHC PardubiceEC VSVRitten-RenonMora IKGraz 99ersNHL Dr...

 

Private coeducational liberal arts college 37°44′25″N 79°21′01″W / 37.74028°N 79.35028°W / 37.74028; -79.35028 Southern Virginia UniversityFormer namesBowling Green Female Seminary (1867–1920)Southern Seminary (1920–1992)Southern Virginia College (1992–2001)MottoLearn that Life is ServiceTypePrivate liberal arts collegeEstablished1867; 156 years ago (1867)AccreditationSACSEndowment$1.3 million (2017)[1]PresidentBonnie H. Cord...

Peruvian stand-up comedian and actor (born 1964) In this Spanish name, the first or paternal surname is Alcántara and the second or maternal family name is Vilar. Carlos AlcántaraCarlos Alcántara at the Asu Mare pre-premiereBornCarlos Alberto Alcántara Vilar (1964-11-12) November 12, 1964 (age 59)Lima, PeruOther namesCachínOccupation(s)Stand-up comedian and actorYears active1981–presentSpouse Jossie Lindley ​(m. 2010)​Children3 Carlos...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Myothit Township – news · newspapers · books · scholar · JSTOR (August 2013) (Learn how and when to remove this template message) Township in Magway Division, BurmaMyothit Township မြို့သစ် မြို့နယ်TownshipLocation in Magway districtCountry B...

 

Former railway line in Queensland, Australia This article is about the former railway line on the Gold Coast. For the present line on the Gold Coast, see Gold Coast railway line. Map all coordinates using: OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) South Coast LineTrain at Tweed Heads in 1940OverviewOwnerQueensland RailwaysServiceOperator(s)Queensland RailwaysHistoryOpened25 January 1889 (to Southport)10 August 1903 (...

1992 Spanish filmThe Final JudgmentDirected byGustavo FuertesWritten byGustavo FuertesProduced byGustavo FuertesEsperanza de ProvensStarringÁngel Relló (Man - Pilot)Andrea Guardiola (God)Manuel Pereiro (Father Time)Irene Guerrero de Luna (The Grim Reaper Voice)CinematographyÁngel VillaríasEdited byGustavo FuertesMusic byHugo WesterdahlProductioncompanyLegendLand FilmsRelease date 1992 (1992) Running time23 minutesCountrySpainLanguageSpanish The Final Judgment (1992), original title E...

 

Hereditary nobility PetitPlace of originBombay, Bombay Presidency, British IndiaMembersDinshaw Maneckji Petit Rattanbai PetitConnected familiesTata familyJinnah familyTraditionsZoroastrian The Petit Baronetcy, of Petit Hall on the Island of Bombay, is a title in the Baronetage of the United Kingdom. It was created on 1 September 1890 for the Indian entrepreneur and philanthropist Dinshaw Maneckji Petit. The baronetcy was created with remainder to Framjee Petit, second son of the first Baronet...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2022. Hitam Kumbang Kumbang tandukCommon connotationsKumbang badak hitam     Koordinat warnaTriplet hex#0E0E10sRGBB    (r, g, b)(14, 14, 16)CMYKH   (c, m, y, k)(100, 40, 50, 90)HSV       (h, s, v)(240°, 12.5%...

Brigadier SirLindsay Tasman RideCBE, JP, ED, MD, MRCS, LRCP, Hon LLDVice-Chancellor of the University of Hong KongIn officeApril 1949 – November 1964Preceded byDuncan John SlossSucceeded byWilliam Charles Knowles Personal detailsBornLindsay Tasman Ride(1898-10-10)10 October 1898Newstead, Victoria, AustraliaDied17 October 1977(1977-10-17) (aged 79)British Hong KongChildrenWilliam David Lindsay Ride, Elizabeth Mary Ride, Dorothy Ann Ride, Edwin John Lindsay RideAlma materScotch College, ...

 

You can help expand this article with text translated from the corresponding article in German. (April 2019) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedi...

 

Questa voce sull'argomento calciatori austriaci è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Ludwig Hussak Nazionalità  Impero austriaco Calcio Ruolo Attaccante Carriera Squadre di club1 1901-1911 Vienna Cricketer? (?)1911-1914 Austria Vienna40 (29)[1] Nazionale 1905-1912 Impero austriaco14 (5) 1 I due numeri indicano le presenze e le reti segnate, per le sole partite di campi...

Israeli mathematician Saharon ShelahShelah in 2005Born (1945-07-03) July 3, 1945 (age 78)Jerusalem, British Mandate for Palestine (now Israel)Alma mater Tel Aviv University (B.Sc) Hebrew University (M.Sc., Ph.D.) Known forProper Forcing, PCF theory, Sauer–Shelah lemma, Shelah cardinalAwards Erdős Prize (1977) Rothschild Prize (1982) Karp Prize (1983) George Pólya Prize (1992) Gödel Lecture (1996) Bolyai Prize (2000) Wolf Prize (2001) Israel Prize (1998) EMET Prize (2011) L...

 

Dieser Artikel behandelt die U-Bahn-Station in Wien. Zu anderen U-Bahn-Stationen mit dem Namen Rathaus siehe U-/S-Bahnhof Rathaus. Rathaus U-Bahn-Station in Wien Baustelle der Station Rathaus (Mai 2021) Basisdaten Bezirk: Innere Stadt, Josefstadt Koordinaten: 48° 12′ 37″ N, 16° 21′ 19″ O48.21027777777816.355277777778Koordinaten: 48° 12′ 37″ N, 16° 21′ 19″ O Eröffnet: 8. Oktober 1966 Neugestaltet: 1980 Gleise (Ba...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!