In symplectic geometry, a branch of mathematics, Weinstein's neighbourhood theorem refers to a few distinct but related theorems, involving the neighbourhoods of submanifolds in symplectic manifolds and generalising the classical Darboux's theorem.[1] They were proved by Alan Weinstein in 1971.[2]
Darboux-Moser-Weinstein theorem
This statement is a direct generalisation of Darboux's theorem, which is recovered by taking a point as .[1][2]
Let be a smooth manifold of dimension , and and two symplectic forms on . Consider a compact submanifold such that . Then there exist
- two open neighbourhoods and of in ;
- a diffeomorphism ;
such that and .
Its proof employs Moser's trick.[3][4]
Generalisation: equivariant Darboux theorem
The statement (and the proof) of Darboux-Moser-Weinstein theorem can be generalised in presence of a symplectic action of a Lie group.[2]
Let be a smooth manifold of dimension , and and two symplectic forms on . Let also be a compact Lie group acting on and leaving both and invariant. Consider a compact and -invariant submanifold such that . Then there exist
- two open -invariant neighbourhoods and of in ;
- a -equivariant diffeomorphism ;
such that and .
In particular, taking again as a point, one obtains an equivariant version of the classical Darboux theorem.
Weinstein's Lagrangian neighbourhood theorem
Let be a smooth manifold of dimension , and and two symplectic forms on . Consider a compact submanifold of dimension which is a Lagrangian submanifold of both and , i.e. . Then there exist
- two open neighbourhoods and of in ;
- a diffeomorphism ;
such that and .
This statement is proved using the Darboux-Moser-Weinstein theorem, taking a Lagrangian submanifold, together with a version of the Whitney Extension Theorem for smooth manifolds.[1]
Generalisation: Coisotropic Embedding Theorem
Weinstein's result can be generalised by weakening the assumption that is Lagrangian.[5][6]
Let be a smooth manifold of dimension , and and two symplectic forms on . Consider a compact submanifold of dimension which is a coisotropic submanifold of both and , and such that . Then there exist
- two open neighbourhoods and of in ;
- a diffeomorphism ;
such that and .
Weinstein's tubular neighbourhood theorem
While Darboux's theorem identifies locally a symplectic manifold with , Weinstein's theorem identifies locally a Lagrangian with the zero section of . More precisely
Let be a symplectic manifold and a Lagrangian submanifold. Then there exist
- an open neighbourhood of in ;
- an open neighbourhood of the zero section in the cotangent bundle ;
- a symplectomorphism ;
such that sends to .
Proof
This statement relies on the Weinstein's Lagrangian neighbourhood theorem, as well as on the standard tubular neighbourhood theorem.[1]
References