Toffoli gate

In logic circuits, the Toffoli gate, also known as the CCNOT gate (“controlled-controlled-not”), invented by Tommaso Toffoli, is a CNOT gate with two control qubits and one target qubit. That is, the target qubit (third qubit) will be inverted if the first and second qubits are both 1. It is a universal reversible logic gate, which means that any classical reversible circuit can be constructed from Toffoli gates.

The truth table and matrix are as follows:

Truth table Permutation matrix form
Input Output
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Background

An input-consuming logic gate L is reversible if it meets the following conditions: (1) L(x) = y is a gate where for any output y, there is a unique input x; (2) The gate L is reversible if there is a gate L´(y) = x which maps y to x, for all y.

An example of a reversible logic gate is a NOT, which can be described from its truth table below:

Input Output Condition (1) Condition (2)
0 1 x = 0 y = 1 y = 1 x = 0
1 0 x = 1 y = 0 y = 0 x = 1

The common AND gate is not reversible, because the inputs 00, 01 and 10 are all mapped to the output 0.

Input Output Condition (1)
00 0 x not unique for y = 0
01 0 x not unique for y = 0
10 0 x not unique for y = 0
11 1 x = 11 y = 1

Reversible gates have been studied since the 1960s. The original motivation was that reversible gates dissipate less heat (or, in principle, no heat).[1]

More recent motivation comes from quantum computing. In quantum mechanics the quantum state can evolve in two ways: by Schrödinger's equation (unitary transformations), or by their collapse. Logic operations for quantum computers, of which the Toffoli gate is an example, are unitary transformations and therefore evolve reversibly.[2]

Hardware description

The classical Toffoli gate is implemented in a hardware description language such as Verilog:

module toffoli_gate (
 input u1, input u2, input in,
 output v1, output v2, output out);
always @(*) begin
    v1 = u1;
    v2 = u2;
    out = in ^ (u1 && u2);
end
endmodule

Universality and Toffoli gate

Any reversible gate that consumes its inputs and allows all input computations must have no more input bits than output bits, by the pigeonhole principle. For one input bit, there are two possible reversible gates. One of them is NOT. The other is the identity gate, which maps its input to the output unchanged. For two input bits, the only non-trivial gate is the controlled NOT gate (CNOT), which XORs the first bit to the second bit and leaves the first bit unchanged.

Truth table Permutation matrix form
Input Output
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Unfortunately, there are reversible functions that cannot be computed using just those gates. For example, AND cannot be achieved by those gates. In other words, the set consisting of NOT and XOR gates is not universal. To compute an arbitrary function using reversible gates, the Toffoli gate, proposed in 1980 by Toffoli, can indeed achieve the goal.[3] It can be also described as mapping bits {a, b, c} to {a, b, c XOR (a AND b)}. This can also be understood as a modulo operation on bit c: {a, b, c} → {a, b, (c + ab) mod 2}, often written as {a, b, c} → {a, b, cab}.[4]

The Toffoli gate is universal; this means that for any Boolean function f(x1, x2, ..., xm), there is a circuit consisting of Toffoli gates that takes x1, x2, ..., xm and some extra bits set to 0 or 1 to outputs x1, x2, ..., xm, f(x1, x2, ..., xm), and some extra bits (called garbage). A NOT gate, for example, can be constructed from a Toffoli gate by setting the three input bits to {a, 1, 1}, making the third output bit (1 XOR (a AND 1)) = NOT a; (a AND b) is the third output bit from {a, b, 0}. Essentially, this means that one can use Toffoli gates to build systems that will perform any desired Boolean function computation in a reversible manner.

The Fredkin gate
The Toffoli gate can be constructed from single qubit T- and Hadamard-gates, and a minimum of six CNOTs.
  • The Fredkin gate is a universal reversible 3-bit gate that swaps the last two bits if the first bit is 1; a controlled-swap operation.
  • The n-bit Toffoli gate is a generalization of the Toffoli gate. It takes n bits x1, x2, ..., xn as inputs and outputs n bits. The first n − 1 output bits are just x1, ..., xn−1. The last output bit is (x1 AND ... AND xn−1) XOR xn.
  • The Toffoli gate can be realized by five two-qubit quantum gates,[5] but it can be shown that it is not possible using fewer than five.[6]
  • Another universal gate, the Deutsch gate, can be realized by five optical pulses with neutral atoms.[7] The Deutsch gate is a universal gate for quantum computing.[8]
  • The Margolus gate (named after Norman Margolus), also called simplified Toffoli, is very similar to a Toffoli gate but with a −1 in the diagonal: RCCX = diag(1, 1, 1, 1, 1, −1, X). The Margolus gate is also universal for reversible circuits and acts very similar to a Toffoli gate, with the advantage that it can be constructed with about half of the CNOTs compared to the Toffoli gate.[9]
  • The iToffoli gate was implemented in superconducting qubits with pair-wise coupling by simultaneously applying noncommuting operations. [10]

Relation to quantum computing

Any reversible gate can be implemented on a quantum computer, and hence the Toffoli gate is also a quantum operator. However, the Toffoli gate cannot be used for universal quantum computation, though it does mean that a quantum computer can implement all possible classical computations. The Toffoli gate has to be implemented along with some inherently quantum gate(s) in order to be universal for quantum computation. In fact, any single-qubit gate with real coefficients that can create a nontrivial quantum state suffices.[11] A Toffoli gate based on quantum mechanics was successfully realized in January 2009 at the University of Innsbruck, Austria.[12] While the implementation of an n-qubit Toffoli with circuit model requires 2n CNOT gates,[13] the best known upper bound stands at 6n − 12 CNOT gates.[14] It has been suggested that trapped Ion Quantum computers may be able to implement an n-qubit Toffoli gate directly.[15] The application of many-body interaction could be used for direct operation of the gate in trapped ions, Rydberg atoms and superconducting circuit implementations.[16][17][18][19][20][21] Following the dark-state manifold, Khazali-Mølmer Cn-NOT gate[17] operates with only three pulses, departing from the circuit model paradigm. The iToffoli gate was implemented in a single step using three superconducting qubits with pair-wise coupling. [22]

See also

References

  1. ^ Landauer, R. (July 1961). "Irreversibility and Heat Generation in the Computing Process". IBM Journal of Research and Development. 5 (3): 183–191. doi:10.1147/rd.53.0183. ISSN 0018-8646.
  2. ^ Colin P. Williams (2011). Explorations in Quantum Computing. Springer. pp. 25–29, 61. ISBN 978-1-84628-887-6.
  3. ^ Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: Toffoli, Tommaso (1980). J. W. de Bakker and J. van Leeuwen (ed.). Reversible computing (PDF). Automata, Languages and Programming, Seventh Colloquium. Noordwijkerhout, Netherlands: Springer Verlag. pp. 632–644. doi:10.1007/3-540-10003-2_104. ISBN 3-540-10003-2. Archived from the original (PDF) on 2010-04-15.
  4. ^ Nielsen, Michael L.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (10th ed.). Cambridge University Press. p. 29. ISBN 9781107002173.
  5. ^ Barenco, Adriano; Bennett, Charles H.; Cleve, Richard; DiVincenzo, David P.; Margolus, Norman; Shor, Peter; Sleator, Tycho; Smolin, John A.; Weinfurter, Harald (Nov 1995). "Elementary gates for quantum computation". Physical Review A. 52 (5): 3457–3467. arXiv:quant-ph/9503016. Bibcode:1995PhRvA..52.3457B. doi:10.1103/PhysRevA.52.3457. PMID 9912645. S2CID 8764584.
  6. ^ Yu, Nengkun; Duan, Runyao; Ying, Mingsheng (2013-07-30). "Five two-qubit gates are necessary for implementing the Toffoli gate". Physical Review A. 88 (1): 010304. arXiv:1301.3372. Bibcode:2013PhRvA..88a0304Y. doi:10.1103/physreva.88.010304. ISSN 1050-2947. S2CID 55486826.
  7. ^ Shi, Xiao-Feng (May 2018). "Deutsch, Toffoli, and CNOT Gates via Rydberg Blockade of Neutral Atoms". Physical Review Applied. 9 (5): 051001. arXiv:1710.01859. Bibcode:2018PhRvP...9e1001S. doi:10.1103/PhysRevApplied.9.051001. S2CID 118909059.
  8. ^ Deutsch, D. (1989). "Quantum Computational Networks". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 425 (1868): 73–90. Bibcode:1989RSPSA.425...73D. doi:10.1098/rspa.1989.0099. ISSN 0080-4630. JSTOR 2398494. S2CID 123073680.
  9. ^ Maslov, Dmitri (2016-02-10). "Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization". Physical Review A. 93 (2): 022311. arXiv:1508.03273. Bibcode:2016PhRvA..93b2311M. doi:10.1103/PhysRevA.93.022311. ISSN 2469-9926.
  10. ^ Kim, Y.; Morvan, A.; Nguyen, L.B.; Naik, R.K.; Jünger, C.; Chen, L.; Kreikebaum, J.M.; Santiago, D.I.; Siddiqi, I. (2 May 2022). "High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits". Nature Physics. 18 (5): 783–788. arXiv:2108.10288. Bibcode:2022NatPh..18..783K. doi:10.1038/s41567-022-01590-3.
  11. ^ Shi, Yaoyun (Jan 2003). "Both Toffoli and Controlled-NOT need little help to do universal quantum computation". Quantum Information & Computation. 3 (1): 84–92. arXiv:quant-ph/0205115. Bibcode:2002quant.ph..5115S. doi:10.26421/QIC3.1-7.
  12. ^ Monz, T.; Kim, K.; Hänsel, W.; Riebe, M.; Villar, A. S.; Schindler, P.; Chwalla, M.; Hennrich, M.; Blatt, R. (Jan 2009). "Realization of the Quantum Toffoli Gate with Trapped Ions". Physical Review Letters. 102 (4): 040501. arXiv:0804.0082. Bibcode:2009PhRvL.102d0501M. doi:10.1103/PhysRevLett.102.040501. PMID 19257408. S2CID 2051775.
  13. ^ Shende, Vivek V.; Markov, Igor L. (2008-03-15). "On the CNOT-cost of TOFFOLI gates". arXiv:0803.2316 [quant-ph].
  14. ^ Maslov, Dmitri (2016). "Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization". Physical Review A. 93 (2): 022311. arXiv:1508.03273. Bibcode:2016PhRvA..93b2311M. doi:10.1103/PhysRevA.93.022311. S2CID 5226873.
  15. ^ Katz, Or; Cetina, Marko; Monroe, Christopher (2022-02-08). " -Body Interactions between Trapped Ion Qubits via Spin-Dependent Squeezing". Physical Review Letters. 129 (6): 063603. arXiv:2202.04230. doi:10.1103/PhysRevLett.129.063603. PMID 36018637. S2CID 246679905.
  16. ^ Arias Espinoza, Juan Diego; Groenland, Koen; Mazzanti, Matteo; Schoutens, Kareljan; Gerritsma, Rene (2021-05-28). "High-fidelity method for a single-step N-bit Toffoli gate in trapped ions". Physical Review A. 103 (5): 052437. arXiv:2010.08490. Bibcode:2021PhRvA.103e2437E. doi:10.1103/PhysRevA.103.052437. S2CID 223953418.
  17. ^ a b Khazali, Mohammadsadegh; Mølmer, Klaus (2020-06-11). "Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits". Physical Review X. 10 (2): 021054. arXiv:2006.07035. Bibcode:2020PhRvX..10b1054K. doi:10.1103/PhysRevX.10.021054. ISSN 2160-3308.
  18. ^ Isenhower, L.; Saffman, M.; Mølmer, K. (2011-09-04). "Multibit CkNOT quantum gates via Rydberg blockade". Quantum Information Processing. 10 (6): 755. arXiv:1104.3916. doi:10.1007/s11128-011-0292-4. ISSN 1573-1332. S2CID 28732092.
  19. ^ Rasmussen, S. E.; Groenland, K.; Gerritsma, R.; Schoutens, K.; Zinner, N. T. (2020-02-07). "Single-step implementation of high-fidelity n -bit Toffoli gates". Physical Review A. 101 (2): 022308. arXiv:1910.07548. Bibcode:2020PhRvA.101b2308R. doi:10.1103/physreva.101.022308. ISSN 2469-9926. S2CID 204744044.
  20. ^ Nguyen, L.B.; Kim, Y.; Hashim, A.; Goss, N.; Marinelli, B.; Bhandari, B.; Das, D.; Naik, R.K.; Kreikebaum, J.M.; Jordan, A.; Santiago, D.I.; Siddiqi, I. (16 January 2024). "Programmable Heisenberg interactions between Floquet qubits". Nature Physics. 20 (1): 240–246. arXiv:2211.10383. Bibcode:2024NatPh..20..240N. doi:10.1038/s41567-023-02326-7.
  21. ^ Nguyen, Long B.; Goss, Noah; Siva, Karthik; Kim, Yosep; Younis, Ed; Qing, Bingcheng; Hashim, Akel; Santiago, David I.; Siddiqi, Irfan (2024). "Empowering a qudit-based quantum processor by traversing the dual bosonic ladder". Nature Communications. 15. arXiv:2312.17741. doi:10.1038/s41467-024-51434-2.
  22. ^ Kim, Y.; Morvan, A.; Nguyen, L.B.; Naik, R.K.; Jünger, C.; Chen, L.; Kreikebaum, J.M.; Santiago, D.I.; Siddiqi, I. (2 May 2022). "High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits". Nature Physics. 18 (5): 783–788. arXiv:2108.10288. Bibcode:2022NatPh..18..783K. doi:10.1038/s41567-022-01590-3.

Read other articles:

  لمعانٍ أخرى، طالع جون هيل (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) جون هيل معلومات شخصية الميلاد 8 يوليو 1941  هاميلتون  الوفاة 11 مارس 2010 (68 سنة) [1]  إنديانابوليس  سبب الوفاة م

 

Новий Амстердам - голландське поселення на Мангеттені, зараз знаходиться на території Нью-Йорка. «Новий Амстердам» - один з двох найстаріших театрів Бродвею. «Новий Амстердам» (2008) - драматичний телесеріал про безсмертного детектива на ім'я Джон Амстердам. «Новий Амстерд...

 

Pemandangan udara dari All England Lawn Tennis and Croquet Club All England Lawn Tennis and Croquet Club,[1] juga dikenal sebagai All England Club,[2] adalah klub anggota pribadi. Tempat ini paling dikenal sebagai tempat Kejuaraan Wimbledon, satu-satunya acara tenis Grand Slam yang masih diadakan di atas rumput. Awalnya acara amatir yang dihadiri anggota klub dan teman-teman mereka selama beberapa hari setiap musim panas, kejuaraan menjadi jauh lebih menonjol daripada klub itu...

Olaf HyttenHytten dalam Becky Sharp (1935)Lahir(1888-03-03)3 Maret 1888Glasgow, SkotlandiaMeninggal11 Maret 1955(1955-03-11) (umur 67)Los Angeles, California, Amerika SerikatMakamWoodlawn CemeteryPekerjaanPemeranTahun aktif1921–1955 Olaf Hytten (3 Maret 1888 – 11 Maret 1955) adalah seorang pemeran asal Skotlandia. Ia tampil dalam lebih dari 280 film antara 1921 dan 1955.[1] Ia lahir di Glasgow, Skotlandia, dan meninggal di Los Angeles, California akibat ser...

 

Song by Russ featuring BIA Best on EarthSingle by Russ featuring Biafrom the album Shake the Snow Globe ReleasedOctober 17, 2019Length2:40LabelDiemonColumbiaSongwriter(s)Russell VitaleMatthew SamuelsJahaan SweetBianca LandrauJonathan SmithCraig LoveDonnell PrinceJamal GlazeLaMarquis JeffersonLawrence EdwardsProducer(s)Boi-1daSweetRuss singles chronology Old Days (2019) Best on Earth (2019) Give Up (2020) Bia singles chronology One Minute Run(2019) Best on Earth(2019) Free Bia (1st Day...

 

Vice-Chancellor of Aligarh Muslim University (1889-1937) Ross MasoodRoss Masood, (right) with Sulaiman Nadwi (center) and Muhammad Iqbal (left) in AfghanistanBorn15 February 1889Delhi, British IndiaDied30 July 1937(1937-07-30) (aged 48)Bhopal, Bhopal State, British IndiaParentSyed Mahmood (father)RelativesSyed Ahmed Khan (grandfather) Part of a series onAligarh Movement Notable ideas Muslim adoption of Western ideas Muslim identity Oxbridge model of education Advocacy of Urdu Notable mem...

Kapilavai LingamurthyBorn(1928-03-31)31 March 1928Jinkunta, Mahabubnagar, Hyderabad state (now Telangana), IndiaDied(2018-11-06)6 November 2018[1]Hyderabad, Telangana, -IndiaOccupationPoet, writerSpouseMeenakshammmaChildrenKapilavai Kishore babu, Kapilavai Ashok babuWebsitekapilavailingamurthy.com Kapilavai Lingamurthy; born 31 March 1928) is a Telugu poet and writer from Mahabubnagar District of Telangana, India.[2] Early life and family Kapilavai Lingamurthy was born on 31 M...

 

Greek noble family from Crete This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kallergis family – news · newspapers · books · scholar · JSTOR (October 2010)...

 

Camp Poplar RiverPoplar, Montana Cantonment at Poplar River, with the agency in the background. From a sketch made by H.O.S. Heistand U.S. ArmySite informationControlled byUnited StatesSite historyBuilt1880In use1880-1893Battles/warsIndian WarsGarrison informationPastcommanders Captain Ogden B. Read, 11th Infantry Captain Charles Steelhammer, 15th Infantry Captain Wilson T. Hartz, 15th Infantry Captain Lloyd Wheaton, 20th Infantry Garrison 11th U.S. Infantry, Companies B and F 15th ...

哆啦A夢:大雄的宇宙小戰爭ドラえもん のび太の宇宙小戦争基本资料导演芝山努原著藤子·F·不二雄配乐菊池俊輔制片商SHIN-EI动画小學館片长97分鐘产地 日本语言日語上映及发行上映日期 1985年3月16日 1989年8月20日(TVB) 1995年(歷紹行影帶及LD) 1990年代[1]票房11.8億日圓前作与续作前作《大雄的魔界大冒險》续作《大雄與鐵人兵團》 《哆啦A夢:大雄的宇宙小战争...

 

215 Azam CorpsPashto: ۲۱۵ عزم قول اردوFoundedOctober 2021CountryAfghanistanAllegiance Islamic Emirate of AfghanistanBranchAfghan ArmyTypeCorpsNickname(s)AzamEngagements2021 Afghanistan–Iran clashesCommandersChief of StaffMaulvi Abdul Aziz AnsariCommanderSharafuddin TaqiDeputy CommanderMohibullah NusratMilitary unit The 215 Azam Corps is one of the eight corps of the Islamic Emirate Army established in October 2021 and headquartered in Helmand. The current Chief of Staff is Maul...

 

SchoolOnehunga High SchoolAddressPleasant Street,Onehunga,Auckland,New ZealandCoordinates36°55′09″S 174°46′13″E / 36.9192°S 174.7704°E / -36.9192; 174.7704InformationTypeState Coeducational secondary (Year 9-13)MottoLoyalty & CourageEstablished1959Ministry of Education Institution no.86PrincipalShameen HayatSchool roll989[1] (April 2023)Socio-economic decile3G[2]Websiteohs.school.nz Onehunga High School is a state co-educational sec...

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Ubur-Ubur Lembur – berita · surat kabar · buku · cendekiawan · JSTOR Ubur-Ubur Lembur Cover Ubur-Ubur LemburPengarangRaditya DikaIlustratorWD WillyPerancang sampulAgung Nur NugrahaNegaraIndonesiaBahasaIn...

 

Karate competition Men's kumite +84 kg at the 2018 Asian GamesVenueJakarta Convention CenterDate25 August 2018Competitors13 from 13 nationsMedalists  Sajjad Ganjzadeh   Iran Nguyễn Minh Phụng   Vietnam Tareg Hamedi   Saudi Arabia Daniyar Yuldashev   Kazakhstan← 20142022 → Karate at the2018 Asian GamesMenWomenkatakata60 kg50 kg67 kg55 kg75 kg61 kg84 kg68 kg+84 kg+68 kgvte Main article: Kar...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (August 2020) (Learn how and when to remove this template message) This article may contain citations that do not verify the text. Please check for citation inaccuracies. (August ...

Species of flowering plant Tinaroo bottlebrush Melaleuca recurva in Maranoa Gardens Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Myrtales Family: Myrtaceae Genus: Melaleuca Species: M. recurva Binomial name Melaleuca recurva(R.D.Spencer & Lumley) Craven[1] Synonyms[1] Callistemon recurvus R.D.Spencer & Lumley Melaleuca recurva, commonly known as Tinaroo bottlebrush, is a plant in the myrtle...

 

Canadian literary award This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Edna Staebler Award – news · newspapers · books · scholar · JSTOR (February 2024) (Learn how and when to remove this message) Edna Staebler AwardAwarded forthe best creative non-fiction book with Canadian significance by a new Canadian writerSponsored byAn Edna Staebler financial en...

 

English Royal Navy officer (1899–1985) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Conolly Abel Smith – news · newspapers · books · scholar · JSTOR (December 2020) (Learn how and when to remove this message) SirConolly Abel SmithVice Admiral Abel Smith in 1960.Born(1899-12-03)3 December 1899Branston, L...

Paghimo ni bot Lsjbot. Alang sa ubang mga dapit sa mao gihapon nga ngalan, tan-awa ang Caley Lake. 51°15′36″N 90°37′51″W / 51.2599°N 90.6307°W / 51.2599; -90.6307 Caley Lake Lanaw Nasod  Kanada Lalawigan Ontario Kondado Kenora District Gitas-on 373 m (1,224 ft) Tiganos 51°15′36″N 90°37′51″W / 51.2599°N 90.6307°W / 51.2599; -90.6307 Area 6.97 km2 (3 sq mi) Timezone EST (UTC-5)  - summer (DST) EDT (UT...

 

Paghimo ni bot Lsjbot. Alang sa ubang mga dapit sa mao gihapon nga ngalan, tan-awa ang Lac Vaillancourt. 50°32′04″N 61°44′45″W / 50.53452°N 61.74592°W / 50.53452; -61.74592 Lac Vaillancourt Lanaw Nasod  Kanada Lalawigan Québec Kondado Côte-Nord Gitas-on 99 m (325 ft) Tiganos 50°32′04″N 61°44′45″W / 50.53452°N 61.74592°W / 50.53452; -61.74592 Area 4.58 km2 (2 sq mi) Timezone EST (UTC-5)  - summer (DST)...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!