Thomas–Fermi equation

Numerical solutions of the Thomas–Fermi equation

In mathematics, the Thomas–Fermi equation for the neutral atom is a second order non-linear ordinary differential equation, named after Llewellyn Thomas and Enrico Fermi,[1][2] which can be derived by applying the Thomas–Fermi model to atoms. The equation reads

subject to the boundary conditions[3]

If approaches zero as becomes large, this equation models the charge distribution of a neutral atom as a function of radius . Solutions where becomes zero at finite model positive ions.[4] For solutions where becomes large and positive as becomes large, it can be interpreted as a model of a compressed atom, where the charge is squeezed into a smaller space. In this case the atom ends at the value of for which .[5][6]

Transformations

Introducing the transformation converts the equation to

This equation is similar to Lane–Emden equation with polytropic index except the sign difference. The original equation is invariant under the transformation . Hence, the equation can be made equidimensional by introducing into the equation, leading to

so that the substitution reduces the equation to

Treating as the dependent variable and as the independent variable, we can reduce the above equation to

But this first order equation has no known explicit solution, hence, the approach turns to either numerical or approximate methods.

Sommerfeld's approximation

The equation has a particular solution , which satisfies the boundary condition that as , but not the boundary condition y(0)=1. This particular solution is

Arnold Sommerfeld used this particular solution and provided an approximate solution which can satisfy the other boundary condition in 1932.[7] If the transformation is introduced, the equation becomes

The particular solution in the transformed variable is then . So one assumes a solution of the form and if this is substituted in the above equation and the coefficients of are equated, one obtains the value for , which is given by the roots of the equation . The two roots are , where we need to take the positive root to avoid the singularity at the origin. This solution already satisfies the first boundary condition (), so, to satisfy the second boundary condition, one writes to the same level of accuracy for an arbitrary

The second boundary condition will be satisfied if as . This condition is satisfied if and since , Sommerfeld found the approximation as . Therefore, the approximate solution is

This solution predicts the correct solution accurately for large , but still fails near the origin.

Solution near origin

Enrico Fermi[8] provided the solution for and later extended by Edward B. Baker.[9] Hence for ,

where .[10][11]

It has been reported by Salvatore Esposito[12] that the Italian physicist Ettore Majorana found in 1928 a semi-analytical series solution to the Thomas–Fermi equation for the neutral atom, which however remained unpublished until 2001. Using this approach it is possible to compute the constant B mentioned above to practically arbitrarily high accuracy; for example, its value to 100 digits is .

References

  1. ^ Davis, Harold Thayer. Introduction to nonlinear differential and integral equations. Courier Corporation, 1962.
  2. ^ Bender, Carl M., and Steven A. Orszag. Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.
  3. ^ Landau, L. D., & Lifshitz, E. M. (2013). Quantum mechanics: non-relativistic theory (Vol. 3). Elsevier. Page. 259-263.
  4. ^ pp. 9-12, N. H. March (1983). "1. Origins – The Thomas–Fermi Theory". In S. Lundqvist and N. H. March. Theory of The Inhomogeneous Electron Gas. Plenum Press. ISBN 978-0-306-41207-3.
  5. ^ March 1983, p. 10, Figure 1.
  6. ^ p. 1562,Feynman, R. P.; Metropolis, N.; Teller, E. (1949-05-15). "Equations of State of Elements Based on the Generalized Fermi-Thomas Theory" (PDF). Physical Review. 75 (10). American Physical Society (APS): 1561–1573. Bibcode:1949PhRv...75.1561F. doi:10.1103/physrev.75.1561. ISSN 0031-899X.
  7. ^ Sommerfeld, A. "Integrazione asintotica dell’equazione differenziale di Thomas–Fermi." Rend. R. Accademia dei Lincei 15 (1932): 293.
  8. ^ Fermi, E. (1928). "Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente". Zeitschrift für Physik (in German). 48 (1–2). Springer Science and Business Media LLC: 73–79. Bibcode:1928ZPhy...48...73F. doi:10.1007/bf01351576. ISSN 1434-6001. S2CID 122644389.
  9. ^ Baker, Edward B. (1930-08-15). "The Application of the Fermi-Thomas Statistical Model to the Calculation of Potential Distribution in Positive Ions". Physical Review. 36 (4). American Physical Society (APS): 630–647. Bibcode:1930PhRv...36..630B. doi:10.1103/physrev.36.630. ISSN 0031-899X.
  10. ^ Comment on: “Series solution to the Thomas–Fermi equation” [Phys. Lett. A 365 (2007) 111], Francisco M.Fernández, Physics Letters A 372, 28 July 2008, 5258-5260, doi:10.1016/j.physleta.2008.05.071.
  11. ^ The analytical solution of the Thomas-Fermi equation for a neutral atom, G I Plindov and S K Pogrebnya, Journal of Physics B: Atomic and Molecular Physics 20 (1987), L547, doi:10.1088/0022-3700/20/17/001.
  12. ^ Esposito, Salvatore (2002). "Majorana solution of the Thomas-Fermi equation". American Journal of Physics. 70 (8): 852–856. arXiv:physics/0111167. Bibcode:2002AmJPh..70..852E. doi:10.1119/1.1484144. S2CID 119063230.

Read other articles:

Ultra low-cost carrier of the United States Casino Express redirects here. For the former Finnish passenger ferry, see MS Casino Express. Not to be confused with Avlo, the low-cost branch of RENFE AVE high-speed rail services. Avelo Airlines IATA ICAO Callsign XP[1] VXP[1] AVELO FoundedJuly 20, 1987; 36 years ago (1987-07-20)(as Casino Express Airlines)December 8, 2005; 17 years ago (2005-12-08)(as Xtra Airways)April 8, 2021; 2 ...

 

マーチ・811 カテゴリー F1Can-AmオーロラF1コンストラクター RAMレーシングデザイナー ロビン・ハード ゴードン・コパック エイドリアン・レイナード先代 マーチ・781後継 マーチ・821主要諸元シャシー アルミニウム製モノコックサスペンション(前) コイルスプリングサスペンション(後) コイルスプリングトレッド 前:1,727 mm (68.0 in)後:1,575 mm (62.0 in)ホ

 

Spaceflight Template‑class Spaceflight portalThis template is within the scope of WikiProject Spaceflight, a collaborative effort to improve the coverage of spaceflight on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.SpaceflightWikipedia:WikiProject SpaceflightTemplate:WikiProject Spaceflightspaceflight articlesTemplateThis template does not require a rating on Wikipedia's content assessment scale....

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. عبر القطب الجنوبي أو بالحروف اللاتينية Transantarcticaو تنطق ترانزانتاركتيكا هي رحلة وبعثة علمية وبشرية عالمية همت عبور القطب الجنوبي بالكامل، بلغت المسافة المقطوعة 6300 كلم تارة عل...

 

Blick zum Altar Blick zur Orgelempore Die Kirche Maria Immaculata ist eine römisch-katholische Pfarrkirche des Erzbistums München-Freising in München. Sie befindet sich im Süden des Stadtteils Harlaching an der Seybothstraße 53 und trägt das Patrozinium der Unbefleckte Empfängnis Mariens. Inhaltsverzeichnis 1 Geschichte 2 Baubeschreibung 3 Orgel 4 Glocken 5 Weblinks 6 Einzelnachweise Geschichte Dem heutigen Kirchengebäude ging eine Notkirche an der gleichen Stelle voraus, die unmittel...

 

قلعة ساندالSandal CastleSandal Castle (بالإنجليزية) قلعة ساندال في إنكلترامعلومات عامةنوع المبنى قلعةالمكان ويست يوركشايرالمنطقة الإدارية ويكفيلد[1] البلد ويلزالتصميم والإنشاءالنمط المعماري عمارة قوطية معلومات أخرىموقع الويب wakefield.gov.uk…[2] (الإنجليزية) الإحداثيات 53°39′31″N 1...

الحُب الغير المتبادل هو الشعور بالحب تجاه شخص مُدرك لمشاعر العاشق العميقة و ميوله العاطفية ولكنه لا يبادله نفس الشعور، أو قد يكون غير مدرك لمشاعر المحب بسبب إخفائه الأمر عنه، فيكون الحب في نظر المجتمع غير متبادل. وعرّف قاموس ميريام كلمة ( غير متبادل ) أنه ليس بالمثل أو مردود...

 

Logo der Asociación Uruguaya de Fútbol Fußball ist in Uruguay, wie in fast ganz Lateinamerika, die wichtigste Sportart überhaupt. Sehr viele Jugendliche spielen Fußball, und Profi-Spieler können zu Nationalhelden aufsteigen. Inhaltsverzeichnis 1 Verband 2 Nationalmannschaft 3 Vereinsbetrieb 3.1 Primera División Profesional de Uruguay 3.1.1 Meistertitel in der Amateurliga 3.1.2 Mannschaften mit den meisten Titeln 3.1.3 Meistertitel in der Profiliga 3.1.4 Mannschaften mit den meisten Tit...

 

Sungai Pasig Negara Philippines Region Wilayah Ibukota Nasional Filipina, Calabarzon Anak sungai  - kiri Sungai Pateros-Taguig, Sungai San Juan  - kanan Sungai Marikina, Sungai Napindan Kota Manila, Makati, Mandaluyong, Pasig, Taguig Sumber Laguna de Bay Muara Teluk Manila  - lokasi Manila  - elevation 0 m (0 ft) Panjang 27 km (17 mi) DAS 570 km2 (220 sq mi) Daerah Aliran Sungai Pasig-Sungai Marikina. Sungai Pasig (Fil...

عنتروبوتيةالمقالات الرئيسية Outline Glossary Index History روبوت Geography Hall of Fame Ethics Laws AI competitions الأنواع هيومانويد أندرويد سايبورغ أنيماترونكس Hexapod صناعي مفصلي ذراع Domestic الروبوت الترفيهي Juggling عسكري جراحة Service Disability Agricultural خدمة الطعام Retailing BEAM robotics روبوتات دقيقة روبوتات النانو Fictional robots م...

 

Carabiniers de la Garde impériale Carabinier de la Garde impériale. Huile sur toile d'Édouard Detaille, 1911. Création 1865 Dissolution 1871 Pays France Allégeance Second Empire Branche Cavalerie Fait partie de Garde impériale Guerres Guerre franco-prussienne Batailles Saint-PrivatMetzBeaune-la-Rolande modifier  Le régiment de carabiniers de la Garde impériale est une unité militaire française, faisant partie de la Seconde Garde impériale de 1865 à 1871[1]. Garnisons, campagn...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 34th British Academy Film Awards – news · newspapers · books · scholar · JSTOR (November 2009) (Learn how and when to remove this template message) 34th British Academy Film AwardsDate1981HighlightsBest FilmThe Elephant ManBest ActorJohn HurtThe Elephant ManBest ActressJudy Davi...

1972 British filmThe Daredevil MenOriginal film posterDirected byJohn SealeyWritten byJohn SealeyStarringTom AdamsProductioncompanyWendon filmsRelease date1972Running timeapprox. 20 min.CountryUKLanguageEnglish The Daredevil Men is a 1972 British short subject detailing the activities of stunt performers and stunt arrangers featuring Tom Adams. Plot The film demonstrates how action scenes in a film are creating using stunt performers, editing and special effects. Each bit in an action setpiec...

 

1996 video gameThe Amazing Spider-Man: Web of FireDeveloper(s)BlueSky SoftwareZonoPublisher(s)SegaProducer(s)Jerry HuberJerry MarkotaProgrammer(s)Brian BelfieldKeith FreiheitComposer(s)Brian L. SchmidtSam PowellPlatform(s)32XReleaseNA: March 1996Genre(s)Action-adventureMode(s)Single-player The Amazing Spider-Man: Web of Fire[a] is a side-scrolling action-adventure video game developed by BlueSky Software and Zono, and published by Sega exclusively for the 32X add-on in North America i...

 

General Mills-US Air Force surveillance balloon program Project GENETRIX Balloon during launch Project Genetrix, also known as WS-119L, was a program run by the U.S. Air Force, Navy, and the Central Intelligence Agency during the 1950s under the guise of meteorological research.[1] It launched hundreds of surveillance balloons that flew over China, Eastern Europe, and the Soviet Union to collect intelligence on their nuclear capabilities. The Genetrix balloons were manufactured by the...

Dirt oval race track located in Erie, Pennsylvania This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Eriez Speedway – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this template message) Eriez Speedway located in Erie, Pennsylvania, United States is a 3/8 mile dirt oval race track. On ...

 

Swedish diplomat and gymnast Gustaf WeidelGustaf Weidel during his time as a student at Lund University.BornNils Gustaf Johnsson(1890-03-07)7 March 1890Malmö, SwedenDied11 December 1959(1959-12-11) (aged 69)Washington, D.C., USANationalitySwedishOccupationDiplomat Olympic medal record Men's Gymnastics 1908 London Gymnastics team Nils Gustaf Weidel, né Johnsson (7 March 1890 – 11 December 1959) was a Swedish diplomat and gymnast who competed in the 1908 Summer Olympics.[1] Car...

 

Духові музичні інструменти Духові́ музи́чні інструме́нти — музичні інструменти, що являють собою різні за розмірами та матеріалом трубки, в яких внаслідок коливання стовпа повітря, що міститься в них усередині, утворюється звук. Характер звука духових музичних інструм...

Anastatus Unidentified Anastatus species Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Arthropoda Class: Insecta Order: Hymenoptera Family: Eupelmidae Genus: AnastatusMotschulsky, 1859 Type species Podagrion mantoidaeMotschulsky, 1859 Synonyms Cladanastatus Boucek, 1979 Descampsia Risbec, 1955 Anastatus is a large genus of parasitic wasps belonging to the family Eupelmidae.[1] The genus has cosmopolitan distribution.[1] Species This list is incomplete; ...

 

Paperino ipnotizzatoreTitolo originaleThe Eyes Have It Lingua originaleinglese Paese di produzioneStati Uniti d'America Anno1945 Durata7 min Rapporto1,37:1 Genereanimazione, commedia, fantastico RegiaJack Hannah SceneggiaturaBill Berg e Ralph Wright ProduttoreWalt Disney Casa di produzioneWalt Disney Productions Distribuzione in italianoBuena Vista Distribution MusichePaul J. Smith ScenografiaYale Gracey AnimatoriBob Carlson, Hugh Fraser, Don Patterson e John Reed SfondiThelma Witmer ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!