Stokes' law

In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid.[1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.[2]

Statement of the law

The force of viscosity on a small sphere moving through a viscous fluid is given by:[3][4]

where (in SI units):

  • is the frictional force – known as Stokes' drag – acting on the interface between the fluid and the particle (newtons, kg m s−2);
  • μ (some authors use the symbol η) is the dynamic viscosity (Pascal-seconds, kg m−1 s−1);
  • R is the radius of the spherical object (meters);
  • is the flow velocity relative to the object (meters per second). Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion.

Stokes' law makes the following assumptions for the behavior of a particle in a fluid:

  • Laminar flow
  • No inertial effects (zero Reynolds number)
  • Spherical particles
  • Homogeneous (uniform in composition) material
  • Smooth surfaces
  • Particles do not interfere with each other.

Depending on desired accuracy, the failure to meet these assumptions may or may not require the use of a more complicated model. To 10% error, for instance, velocities need be limited to those giving Re < 1.

For molecules Stokes' law is used to define their Stokes radius and diameter.

The CGS unit of kinematic viscosity was named "stokes" after his work.

Applications

Stokes' law is the basis of the falling-sphere viscometer, in which the fluid is stationary in a vertical glass tube. A sphere of known size and density is allowed to descend through the liquid. If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A series of steel ball bearings of different diameters are normally used in the classic experiment to improve the accuracy of the calculation. The school experiment uses glycerine or golden syrup as the fluid, and the technique is used industrially to check the viscosity of fluids used in processes. Several school experiments often involve varying the temperature and/or concentration of the substances used in order to demonstrate the effects this has on the viscosity. Industrial methods include many different oils, and polymer liquids such as solutions.

The importance of Stokes' law is illustrated by the fact that it played a critical role in the research leading to at least three Nobel Prizes.[5]

Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity.[5]

In air, the same theory can be used to explain why small water droplets (or ice crystals) can remain suspended in air (as clouds) until they grow to a critical size and start falling as rain (or snow and hail).[6] Similar use of the equation can be made in the settling of fine particles in water or other fluids.[citation needed]

Terminal velocity of sphere falling in a fluid

Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force Fd and force by gravity Fg.

At terminal (or settling) velocity, the excess force Fe due to the difference between the weight and buoyancy of the sphere (both caused by gravity[7]) is given by:

where (in SI units):

Requiring the force balance Fd = Fe and solving for the velocity v gives the terminal velocity vs. Note that since the excess force increases as R3 and Stokes' drag increases as R, the terminal velocity increases as R2 and thus varies greatly with particle size as shown below. If a particle only experiences its own weight while falling in a viscous fluid, then a terminal velocity is reached when the sum of the frictional and the buoyant forces on the particle due to the fluid exactly balances the gravitational force. This velocity v [m/s] is given by:[7]

where (in SI units):

  • g is the gravitational field strength [m/s2]
  • R is the radius of the spherical particle [m]
  • ρp is the mass density of the particle [kg/m3]
  • ρf is the mass density of the fluid [kg/m3]
  • μ is the dynamic viscosity [kg/(m•s)].

Derivation

Steady Stokes flow

In Stokes flow, at very low Reynolds number, the convective acceleration terms in the Navier–Stokes equations are neglected. Then the flow equations become, for an incompressible steady flow:[8]

where:

  • p is the fluid pressure (in Pa),
  • u is the flow velocity (in m/s), and
  • ω is the vorticity (in s−1), defined as 

By using some vector calculus identities, these equations can be shown to result in Laplace's equations for the pressure and each of the components of the vorticity vector:[8]

  and  

Additional forces like those by gravity and buoyancy have not been taken into account, but can easily be added since the above equations are linear, so linear superposition of solutions and associated forces can be applied.

Transversal flow around a sphere

Streamlines of creeping flow past a sphere in a fluid. Isocontours of the ψ function (values in contour labels).

For the case of a sphere in a uniform far field flow, it is advantageous to use a cylindrical coordinate system (r, φ, z). The z–axis is through the centre of the sphere and aligned with the mean flow direction, while r is the radius as measured perpendicular to the z–axis. The origin is at the sphere centre. Because the flow is axisymmetric around the z–axis, it is independent of the azimuth φ.

In this cylindrical coordinate system, the incompressible flow can be described with a Stokes stream function ψ, depending on r and z:[9][10]

with ur and uz the flow velocity components in the r and z direction, respectively. The azimuthal velocity component in the φ–direction is equal to zero, in this axisymmetric case. The volume flux, through a tube bounded by a surface of some constant value ψ, is equal to 2πψ and is constant.[9]

For this case of an axisymmetric flow, the only non-zero component of the vorticity vector ω is the azimuthal φ–component ωφ[11][12]

The Laplace operator, applied to the vorticity ωφ, becomes in this cylindrical coordinate system with axisymmetry:[12]

From the previous two equations, and with the appropriate boundary conditions, for a far-field uniform-flow velocity u in the z–direction and a sphere of radius R, the solution is found to be[13]

The solution of velocity in cylindrical coordinates and components follows as:


Stokes-Flow around sphere with parameters of Far-Field velocity , radius of sphere , viscosity of water (T = 20°C) . Shown are the field-lines of velocity-field and the amplitudes of velocity, pressure and vorticity with pseudo-colors.

The solution of vorticity in cylindrical coordinates follows as:

The solution of pressure in cylindrical coordinates follows as:

The solution of pressure in spherical coordinates follows as:

The formula of pressure is also called dipole potential analogous to the concept in electrostatics.

A more general formulation, with arbitrary far-field velocity-vector , in cartesian coordinates follows with:

In this formulation the non-conservative term represents a kind of so-called Stokeslet. The Stokeslet is the Green's function of the Stokes-Flow-Equations. The conservative term is equal to the dipole gradient field. The formula of vorticity is analogous to the Biot–Savart law in electromagnetism.

Alternatively, in a more compact way, one can formulate the velocity field as follows:

,

where is the Hessian matrix differential operator and is a differential operator composed as the difference of the Laplacian and the Hessian. In this way it becomes explicitly clear, that the solution is composed from derivatives of a Coulomb-type potential () and a Biharmonic-type potential (). The differential operator applied to the vector norm generates the Stokeslet.

The following formula describes the viscous stress tensor for the special case of Stokes flow. It is needed in the calculation of the force acting on the particle. In Cartesian coordinates the vector-gradient is identical to the Jacobian matrix. The matrix I represents the identity-matrix.

The force acting on the sphere can be calculated via the integral of the stress tensor over the surface of the sphere, where er represents the radial unit-vector of spherical-coordinates:

Rotational flow around a sphere

Stokes-Flow around sphere: , ,

Other types of Stokes flow

Although the liquid is static and the sphere is moving with a certain velocity, with respect to the frame of sphere, the sphere is at rest and liquid is flowing in the opposite direction to the motion of the sphere.

See also

Sources

  • Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press. ISBN 0-521-66396-2.
  • Lamb, H. (1994). Hydrodynamics (6th ed.). Cambridge University Press. ISBN 978-0-521-45868-9. Originally published in 1879, the 6th extended edition appeared first in 1932.

References

  1. ^ Stokes, G. G. (1856). "On the effect of internal friction of fluids on the motion of pendulums". Transactions of the Cambridge Philosophical Society. 9, part ii: 8–106. Bibcode:1851TCaPS...9....8S. The formula for terminal velocity (V) appears on p. [52], equation (127).
  2. ^ Batchelor (1967), p. 233.
  3. ^ Laidler, Keith J.; Meiser, John H. (1982). Physical Chemistry. Benjamin/Cummings. p. 833. ISBN 0-8053-5682-7.
  4. ^ Robert Byron, Bird; Warren E., Stewart; Edwin N., Lightfoot (7 August 2001). Transport Phenomena (2 ed.). John Wiley & Sons, Inc. p. 61. ISBN 0-471-41077-2.
  5. ^ a b Dusenbery, David (2009). Living at micro scale : the unexpected physics of being small. Cambridge, Mass: Harvard University Press. ISBN 978-0-674-03116-6. OCLC 225874255.
  6. ^ Hadley, Peter. "Why don't clouds fall?". Institute of Solid State Physics, TU Graz. Archived from the original on 12 June 2017. Retrieved 30 May 2015.
  7. ^ a b Lamb (1994), §337, p. 599.
  8. ^ a b Batchelor (1967), section 4.9, p. 229.
  9. ^ a b Batchelor (1967), section 2.2, p. 78.
  10. ^ Lamb (1994), §94, p. 126.
  11. ^ Batchelor (1967), section 4.9, p. 230
  12. ^ a b Batchelor (1967), appendix 2, p. 602.
  13. ^ Lamb (1994), §337, p. 598.
  14. ^ Dey, S; Ali, SZ; Padhi, E (2019). "Terminal fall velocity: the legacy of Stokes from the perspective of fluvial hydraulics". Proceedings of the Royal Society A. 475 (2228). Bibcode:2019RSPSA.47590277D. doi:10.1098/rspa.2019.0277. PMC 6735480. PMID 31534429. 20190277.

Read other articles:

Artikel ini perlu diwikifikasi agar memenuhi standar kualitas Wikipedia. Anda dapat memberikan bantuan berupa penambahan pranala dalam, atau dengan merapikan tata letak dari artikel ini. Untuk keterangan lebih lanjut, klik [tampil] di bagian kanan. Mengganti markah HTML dengan markah wiki bila dimungkinkan. Tambahkan pranala wiki. Bila dirasa perlu, buatlah pautan ke artikel wiki lainnya dengan cara menambahkan [[ dan ]] pada kata yang bersangkutan (lihat WP:LINK untuk keterangan lebih lanjut...

 

Yuji Kimura Datos personalesNacimiento Tokio5 de octubre de 1987 (36 años)País JapónNacionalidad(es) Japonés JaponésAltura 1,77 m (5′ 10″)Peso 70 kg (154 lb)Carrera deportivaDeporte FútbolClub profesionalDebut deportivo 2006(Kawasaki Frontale)Club Mito HollyHockLiga J2 LeaguePosición CentrocampistaDorsal(es) 10Trayectoria Kawasaki Frontale (2006-2010) Giravanz Kitakyushu (2011-2012) Oita Trinita (2013-2014) Tokushima Vortis (2015-2017) Roasso Kumamoto (2017) Mit...

 

Copa Libertadores 2015 Toernooi-informatie Datum 3 februari 2015 – 5 augustus 2015 Teams 38 (van 2 confederaties) Kampioen River Plate (3e titel) Toernooistatistieken Wedstrijden 138 Doelpunten 342  (2,48 per wedstrijd) Topscorer(s) Gustavo Bou (Racing)(8 doelpunten) Portaal    Voetbal De Copa Libertadores de América 2015 was de 56ste editie van de Copa Libertadores, een jaarlijks voetbaltoernooi voor clubs uit Latijns-Amerika, georganiseerd door CONMEBOL. Sinds 2014 is...

 Nota: Para outras cidades com este nome, veja Pieve. Coordenadas: 45° 4' N 8° 58' E Pieve Albignola    Comuna   Localização Pieve AlbignolaLocalização de Pieve Albignola na Itália Coordenadas 45° 4' N 8° 58' E Região Lombardia Província Pavia Características geográficas Área total 17 km² População total 919 hab. Densidade 54,1 hab./km² Altitude 85 m Outros dados Comunas limítrofes Corana, Dorno, Sannazzaro de' Bu...

 

جدارية في ترمسعيا التي تركها مستوطنون إسرائيليون «انتقموا من الغوييم». معاداة الفلسطينيين أو المشاعر المعادية للفلسطينيين إلى التحامل والتمييز ضد الفلسطينيين من جانب جماعات أو افراد. ويشار إليها أحياناً على أنها شكل من أشكال العنصرية تتجلى في المشاعر المعادية للعرب - على

 

In 1995 werd het 65ste Campeonato Alagoano gespeeld voor voetbalclubs uit de Braziliaanse staat Alagoas. De competitie werd georganiseerd door de Federação Alagoana de Futebol en werd gespeeld van 12 februari tot 19 november. CRB werd kampioen. Eerste toernooi Eerste fase Plaats Club Wed. W G V Saldo Ptn. 1. CRB 10 8 1 1 24:4 25 2. Capela 10 6 2 2 10:5 20 3. Sete de Setembro 10 5 2 3 8:7 17 4. Batalhense 10 5 2 3 9:12 17 5. CSA 10 5 1 4 15:11 16 6. ASA 10 3 2 5 10:14 11 7. Comercial 10 2 3 ...

Музей народної архітектури 49°34′26″ пн. ш. 22°12′48″ сх. д. / 49.5739750000277724° пн. ш. 22.21336800002777778° сх. д. / 49.5739750000277724; 22.21336800002777778Координати: 49°34′26″ пн. ш. 22°12′48″ сх. д. / 49.5739750000277724° пн. ш. 22.21336800002777778° сх. д. / 49.57397500002777...

 

Кшук54°58′27″ пн. ш. 155°36′01″ сх. д. / 54.9741666666947779° пн. ш. 155.600277777807775692° сх. д. / 54.9741666666947779; 155.600277777807775692Витік Гирло Охотське море• координати 54°58′27″ пн. ш. 155°36′01″ сх. д. / 54.9741666666947779° пн. ш. 155.600277777807775692° сх. д. / 54...

 

Nueva Sinagoga Neue Synagoge Patrimonio arquitectónico alemán, registrode Berlín (Id. 09080249) LocalizaciónPaís Alemania AlemaniaLocalidad Berlín (Mitte)Dirección Oranienburger StraßeCoordenadas 52°31′29″N 13°23′40″E / 52.524722, 13.394444Información religiosaCulto judaísmoHistoria del edificioFundación 1859Construcción 1859–1866Inauguración 1866Reconstrucción 1988Demolición 1958Arquitecto Eduard Knoblauch y Friedrich August StülerDatos a...

Technologist, author, and public domain advocate Carl MalamudCarl Malamud speaking at the UC Berkeley iSchool about (Re-)defining the public domain, October 17, 2007.Born (1959-07-02) July 2, 1959 (age 64)Known forPublic.Resource.OrgNotable workExploring the Internet, A World's FairAwards2009 EFF Pioneer Award Carl Malamud (born July 2, 1959) is an American technologist, author, and public domain advocate, known for his foundation Public.Resource.Org. He founded the Internet Multica...

 

Pour les articles homonymes, voir Lucifer (homonymie). Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires (février 2022). Pour améliorer la vérifiabilité de l'article ainsi que son intérêt encyclopédique, il est nécessaire, quand des sources primaires sont citées, de les associer à des analyses faites par des sources secondaires. Phosphoros-Lucifer, étoile du matin (le...

 

Japanese visual novel and its adaptations TsukihimeVisual novel cover, featuring Arcueid Brunestud月姫 GameDeveloperType-MoonPublisherType-MoonGenreVisual novel, erogeEngineNScripterPlatformMicrosoft WindowsReleasedJP: December 29, 2000 GameTsukihime Plus-DiscDeveloperType-MoonPublisherType-MoonGenreVisual novelEngineNScripter / KiriKiriPlatformMicrosoft WindowsReleasedJP: January 2001 MangaLunar Legend TsukihimeWritten bySasaki ShōnenPublished byASCII Media WorksEnglish publishe...

British woman police officer Stanley wearing the armband and hat-badge of the Women's Patrols (Imperial War Museums, Q 108496). Sofia Anne Stanley (28 January 1873 – 24 September 1953) was the first female police officer and the first commander of the Metropolitan Police's Women Patrols from 1919 to 1922. Biography Early life Stanley was born Sofia Dalgairns in Palermo to the Scottish civil and mechanical engineer, David Croll Dalgairns (1839–1885) and his wife Annie Marie Christine Waygo...

 

雪兰莪鹅唛石英山脊 雪兰莪鹅唛石英山脊(馬來語:Permatang Kuartza Genting Klang ) 是一条贯穿吉隆坡东北部和马来西亚雪兰莪州武吉拉贡-甘清-雪兰莪鹅地区的石英岩脈。山脊全长14公里、宽50公尺,是世界上最长的石英矿脉。山脊上有265种植物,其中有5种当地特有的植物,还有一种名叫黑羚的珍稀动物。[1]2017年雪兰莪鹅唛石英山脊列入联合国世界文化遗产预选名单。[...

 

Prison riot in South Carolina, United States Lee Correctional Prison RiotLee Correctional InstitutionDateApril 15, 2018LocationBishopville, South Carolina, U.S.Coordinates34°11′51″N 80°13′34″W / 34.19747°N 80.22620°W / 34.19747; -80.22620DeathsSeven prisoners stabbed to deathNon-fatal injuries22 prisoners taken to the hospital The Lee Correctional Prison Riot occurred at Lee Correctional Institution in Bishopville, South Carolina, United States, on April 15...

United Downs Deep Geothermal Power is the United Kingdom's first geothermal electricity project. It is situated near Redruth in Cornwall, England. It is owned and operated by Geothermal Engineering (GEL), a private UK company. The drilling site is on the United Downs industrial estate, chosen for its geology, existing grid connection, proximity to access roads and limited impact on local communities.[1] Energy is extracted by cycling water through a naturally hot reservoir and using t...

 

American basketball player Angel McCoughtryAngel McCoughtry in 2018Personal informationBorn (1986-09-10) September 10, 1986 (age 37)Baltimore, Maryland, U.S.Listed height6 ft 1 in (1.85 m)Listed weight173 lb (78 kg)Career informationHigh school Saint Frances Academy(Baltimore, Maryland) The Patterson School(Lenoir, North Carolina) CollegeLouisville (2005–2009)WNBA draft2009: 1st round, 1st overall pickSelected by the Atlanta DreamPlaying career2009–presentPos...

 

German naturalist and painter (1840–1913) Walvis Bay after a sketch by Pechuël-Loesche Moritz Eduard Pechuël-Loesche, (26 July 1840, Zöschen – 29 May 1913, Munich), was a German naturalist, geographer, ethnologist, painter, traveler, author, plant collector and Professor of Geography in Jena and Erlangen. Eduard was the eldest son of Ferdinand Moritz Pechuël, an innkeeper and mill owner, and Wilhelmine Lösche. After school he joined the merchant navy and travelled widely during the 1...

European athletics competition International athletics championship event2021 Championships of the Small States of EuropesDates5 June 2021Host citySerravalle, San MarinoVenueSan Marino StadiumLevelSeniorEvents22Participation15 nations← 2018 Schaan 2022 Marsa → This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2023) (Learn how and when to rem...

 

Vovinam Việt Võ Đạo Logotipo de Vovinam Demostración de Vovinam en Francia en 2014.Otros nombres Việt Võ ĐạoTipo de arte Arte marcialGénero Combate cuerpo a cuerpo, defensa personal y deporte de combatePaís de origen VietnamCreado por Nguyễn Lộc (1938)Especialidad Agarres, golpes, patadas, proyecciones y puñetazos, combate con armas; abanico de guerra, alabarda, bastón, bayoneta, espada, hacha de guerra, lanza, machete, puñal y sableEmparentado con Artes marciales de Asi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!