Spiral similarity

A spiral similarity taking triangle ABC to triangle A'B'C'.

Spiral similarity is a plane transformation in mathematics composed of a rotation and a dilation.[1] It is used widely in Euclidean geometry to facilitate the proofs of many theorems and other results in geometry, especially in mathematical competitions and olympiads. Though the origin of this idea is not known, it was documented in 1967 by Coxeter in his book Geometry Revisited.[2] and 1969 - using the term "dilative rotation" - in his book Introduction to Geometry.[3]

The following theorem is important for the Euclidean plane:
Any two directly similar figures are related either by a translation or by a spiral similarity.[4]
(Hint: Directly similar figures are similar and have the same orientation)

Definition

A spiral similarity is composed of a rotation of the plane followed a dilation about a center with coordinates in the plane.[5] Expressing the rotation by a linear transformation and the dilation as multiplying by a scale factor , a point gets mapped to

On the complex plane, any spiral similarity can be expressed in the form , where is a complex number. The magnitude is the dilation factor of the spiral similarity, and the argument is the angle of rotation.[6]

Properties

Two circles

Spiral similarity

Let T be a spiral similarity mapping circle k to k' with k k' = {C, D} and fixed point C.

Then for each point P k the points P, T(P)= P' and D are collinear.

Remark: This property is the basis for the construction of the center of a spiral similarity for two linesegments.

Proof:

, as rotation and dilation preserve angles.

, as if the radius intersects the chord , then doesn't meet , and if doesn't intersect , then intersects , so one of these angles is and the other is .

So P, P' and D are collinear.

Center of a spiral similarity for two line segments

Through a dilation of a line, rotation, and translation, any line segment can be mapped into any other through the series of plane transformations. We can find the center of the spiral similarity through the following construction:[1]

  • Draw lines and , and let be the intersection of the two lines.
  • Draw the circumcircles of triangles and .
  • The circumcircles intersect at a second point . Then is the spiral center mapping to

Proof: Note that and are cyclic quadrilaterals. Thus, . Similarly, . Therefore, by AA similarity, triangles and are similar. Thus, so a rotation angle mapping to also maps to . The dilation factor is then just the ratio of side lengths to .[5]

Solution with complex numbers

If we express and as points on the complex plane with corresponding complex numbers and , we can solve for the expression of the spiral similarity which takes to and to . Note that and , so . Since and , we plug in to obtain , from which we obtain .[5]

Pairs of spiral similarities

For any points and , the center of the spiral similarity taking to is also the center of a spiral similarity taking to .

This can be seen through the above construction. If we let be the center of spiral similarity taking to , then . Therefore, . Also, implies that . So, by SAS similarity, we see that . Thus is also the center of the spiral similarity which takes to .[5][6]

Corollaries

Proof of Miquel's Quadrilateral Theorem

Spiral similarity can be used to prove Miquel's Quadrilateral Theorem: given four noncollinear points and , the circumcircles of the four triangles and intersect at one point, where is the intersection of and and is the intersection of and (see diagram).[1]

Miquel's Theorem

Let be the center of the spiral similarity which takes to . By the above construction, the circumcircles of and intersect at and . Since is also the center of the spiral similarity taking to , by similar reasoning the circumcircles of and meet at and . Thus, all four circles intersect at .[1]

Example problem

Here is an example problem on the 2018 Japan MO Finals which can be solved using spiral similarity:

Given a scalene triangle , let and be points on segments and , respectively, so that . Let be the circumcircle of triangle and the reflection of across . Lines and meet again at and , respectively. Prove that and intersect on .[5]

Proof: We first prove the following claims:

Claim 1: Quadrilateral is cyclic.

Proof: Since is isosceles, we note that thus proving that quadrilateral is cyclic, as desired. By symmetry, we can prove that quadrilateral is cyclic.

Claim 2:

Proof: We have that By similar reasoning, so by AA similarity, as desired.

We now note that is the spiral center that maps to . Let be the intersection of and . By the spiral similarity construction above, the spiral center must be the intersection of the circumcircles of and . However, this point is , so thus points must be concyclic. Hence, must lie on , as desired.

References

  1. ^ a b c d Chen, Evan (2016). Euclidean Geometry in Mathematical Olympiads. United States: MAA Press. pp. 196–200. ISBN 978-0-88385-839-4.
  2. ^ Coxeter, H.S.M. (1967). Geometry Revisited. Toronto and New York: Mathematical Association of America. pp. 95–100. ISBN 978-0-88385-619-2.
  3. ^ Coxeter, H.S.M. (1969). Introduction to Geometry (2 ed.). New York, London, Sydney and Toronto: John Wiley & Sons. pp. 72–75.
  4. ^ Coxeter, H.S.M. (1967). Geometry Revisited. Mathematical Association of America. p. 97]. ISBN 978-0-88385-619-2.
  5. ^ a b c d e Baca, Jafet (2019). "On a special center of spiral similarity". Mathematical Reflections. 1: 1–9.
  6. ^ a b Zhao, Y. (2010). Three Lemmas in Geometry. See also Solutions

Read other articles:

Armband, gedragen door oorlogsverslaggevers van de SS-Standarte 'Kurt Eggers' De SS-Standarte Kurt Eggers was tussen 1940 en 1945 een Duitse legerformatie van de Waffen-SS, waarvan de leden als oorlogsverslaggevers verslag deden van vrijwel iedere oorlogsactiviteit van de Waffen-SS in de jaren van haar bestaan. Naamgeving De SS-Standarte Kurt Eggers begon haar bestaan onder de naam SS-Kriegsberichter-Kompanie. In december 1943 werd de naam gewijzigd in SS-Standarte Kurt Eggers, ter ere van de...

 

  لمعانٍ أخرى، طالع ديريك غاردنر (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) ديريك غاردنر   معلومات شخصية الميلاد 19 سبتمبر 1931  ووريك  الوفاة 7 يناير 2011 (79 سنة)   مواطنة المملكة المت...

 

?Абутилон Теофраста Біологічна класифікація Домен: Ядерні (Eukaryota) Царство: Рослини (Plantae) Відділ: Вищі рослини (Streptophyta) Надклас: Покритонасінні (Magnoliophyta) Клас: Евдикоти Підклас: Розиди (Rosids) Порядок: Мальвоцвіті (Malvales) Родина: Мальвові (Malvales) Рід: Абутилон (Abutilon) Вид: Абутилон Тео

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Habibie Center – berita · surat kabar · buku · cendekiawan · JSTOR The Habibie Center adalah suatu yayasan, lembaga pemikir (think tank) yang berupaya memajukan modernisasi dan demokratisasi di Indonesia...

 

この項目では、日本の鉄道省について説明しています。 北朝鮮の鉄道行政機関については「朝鮮民主主義人民共和国鉄道省」をご覧ください。 中華人民共和国の鉄道行政機関(中国鉄道省)については「中華人民共和国鉄道部」をご覧ください。 インドの鉄道省については「鉄道省 (インド)」をご覧ください。 日本の行政機関鉄道省Ministry of Railways 日本の国有鉄道のマ

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2020) النمر الأبيضThe White Tiger (بالإنجليزية) معلومات عامةالصنف الفني فيلم دراما تاريخ الصدور 13 يناير 2021 مدة العرض 125 دقيقة مأخوذ عن The White Tiger (en) البلد الولايات المتحدةا

Tượng Sommerfeld đặt ở Đại học Ludwig-Maximilians (LMU), Theresienstr. 37, München, CHLB Đức. Bên dưới là công thức hằng số Sommerfeld trong hệ thống đo lường Gauß, là hệ thường dùng trong vật lý lý thuyết. Trong vật lý học, hằng số cấu trúc tinh tế hoặc hằng số cấu trúc tế vi (Fine-structure constant), còn được gọi là hằng số Sommerfeld và thường được ký hiệu là α {\displaystyle \alpha ...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) شارك مشروع آريان بأطلاق قرابة ال231 صاروخ منذ عام 1979، نجح منها 220 أطلاق مما يعني نسبة النجاح لمشروع أريان ت...

 

Family of French printers and publishers This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (November 2009) This article needs additional citations for verification. Please help improve this article ...

Common name for a moth larva The witchetty grub (also spelled witchety grub or witjuti grub[1]) is a term used in Australia for the large, white, wood-eating larvae of several moths. In particular, it applies to the larvae of the cossid moth Endoxyla leucomochla, which feeds on the roots of the witchetty bush (after which the grubs are named) that is widespread throughout the Northern Territory and also typically found in parts of Western Australia and South Australia,[2] alth...

 

Cantonment in Uttar Pradesh, IndiaBareilly CantonmentCantonmentCantonment General Hospital, Bareilly CanttBareilly CantonmentLocation in Uttar Pradesh, IndiaCoordinates: 28°21′50″N 79°24′54″E / 28.364°N 79.415°E / 28.364; 79.415Country IndiaStateUttar PradeshDistrictBareilly districtFounded byBritish Indian ArmyGovernment • TypeMunicipal • BodyIndian ArmyArea • Total17.12 km2 (6.61 sq mi)Population...

 

The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Viva Vigilante – news · newspapers · books · scholar · JSTOR (May 2016) (...

Filialkirche hl. Josef in Reindmühl bei Altmünster Die Filialkirche heiliger Josef (auch bezeichnet als: Filialkirche Reindlmühl) liegt in der Katastralgemeinde Reindlmühl der oberösterreichischen Marktgemeinde Altmünster im Bezirk Gmunden. Die römisch-katholische Filialkirche ist dem heiligen Josef von Nazaret geweiht und gehört zum Pfarrsprengel der Pfarrkirche Altmünster im Dekanat Gmunden. Der Sakralbau steht unter Denkmalschutz (Listeneintrag). Inhaltsverzeichnis 1 Geschichte 2 ...

 

Japanese manga series by Nobuyuki Fukumoto Gambling Apocalypse: KaijiCover of the first Gambling Apocalypse: Kaiji tankōbon volume, featuring Kaiji Itō賭博黙示録カイジ(Tobaku Mokushiroku Kaiji)GenreAction[1]Gambling[2]Suspense[3] MangaWritten byNobuyuki FukumotoPublished byKodanshaEnglish publisherNA: DenpaManga Planet (digital)ImprintYMKC (former)YMKC Special (current)MagazineWeekly Young MagazineDemographicSeinenOriginal runFebruary 19, 1996 – p...

 

Romanian nationalist and populist political philosophy Part of the Politics seriesPopulism Variants Black Left-wing Narodniks Penal Poporanism Right-wing Techno- Concepts Anti-establishment Anti-intellectualism Anti-politics Common people Demagogy Depoliticisation Egalitarianism Elitism General will Mob rule Popular democracy Pluralism Social justice Third Position Regional variants Canada Europe Latin America New Zealand United States Related topics Agrarianism Alt-right Authoritarianism Ber...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: International Quilt Museum – news · newspapers · books · scholar · JSTOR (October 2018) (Learn how and when to remove this template message) Textile museum in Lincoln, Nebraska U.S.International Quilt MuseumQuilt HouseFormer nameInternational Quilt Study Center...

 

One of the 234 State Legislative Assembly Constituencies in Tamil Nadu, in India 10°09′47″N 78°59′46″E / 10.1631°N 78.9962°E / 10.1631; 78.9962 ArantangiConstituency for the Tamil Nadu Legislative AssemblyConstituency detailsCountryIndiaRegionSouth IndiaStateTamil NaduDistrictPudukottaiLS constituencyRamanathapuramEstablished1952Total electors2,37,024[1]ReservationNoneMember of Legislative Assembly16th Tamil Nadu Legislative AssemblyIncumbent T. Ram...

 

1874 Philadelphia AthleticsLeagueNational Association of Professional Base Ball PlayersBallparkJefferson Street GroundsCityPhiladelphia, PennsylvaniaManagerDick McBride← 18731875 → The 1874 Philadelphia Athletics finished in third place in the National Association with a record of 33-22. Dick McBride pitched all of the team's innings and led the league with a 1.64 earned run average. Regular season 1874 Philadelphia Athletics Season standings National Association W ...

Эмилия-Романьяитал. Emilia-Romagna Флаг[d] Герб 44°45′ с. ш. 11°00′ в. д.HGЯO Страна  Италия Зона Северная Италия Включает Провинции: Болонья, Феррара, Форли-Чезена, Модена, Парма, Пьяченца, Равенна, Реджо-нель-Эмилия, Римини Коммуны: 340 Адм. центр Болонья Глава Стефано ...

 

American neo-Nazi group Aryan Freedom NetworkFounderDalton Henry StoutFoundation2018CountryUnited StatesMotivesEstablishment of a white ethnostate through a race warHeadquartersTexasIdeology Neo-Nazism Racial separatism Christian Identity (some) Size300 to 400Allies Keystone Knights of the Ku Klux Klan ShieldWall American Futurists[1] Websitehttp://white-power.org The Aryan Freedom Network is an American neo-Nazi group that is based in Texas, and it has chapters in 25 U.S. states. AFN...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!