Mathematical constant
In mathematical analysis and number theory , Somos' quadratic recurrence constant or simply Somos' constant is a constant defined as an expression of infinitely many nested square roots . It arises when studying the asymptotic behaviour of a certain sequence [ 1] and also in connection to the binary representations of real numbers between zero and one .[ 2] The constant named after Michael Somos . It is defined by:
σ σ -->
=
1
2
3
4
5
⋯ ⋯ -->
{\displaystyle \sigma ={\sqrt {1{\sqrt {2{\sqrt {3{\sqrt {4{\sqrt {5\cdots }}}}}}}}}}}
which gives a numerical value of approximately:[ 3]
σ σ -->
=
1.661687949633594121295
… … -->
{\displaystyle \sigma =1.661687949633594121295\dots \;}
(sequence A112302 in the OEIS ).
Sums and products
Somos' constant can be alternatively defined via the following infinite product :
σ σ -->
=
∏ ∏ -->
k
=
1
∞ ∞ -->
k
1
/
2
k
=
1
1
/
2
2
1
/
4
3
1
/
8
4
1
/
16
… … -->
{\displaystyle \sigma =\prod _{k=1}^{\infty }k^{1/2^{k}}=1^{1/2}\;2^{1/4}\;3^{1/8}\;4^{1/16}\dots }
This can be easily rewritten into the far more quickly converging product representation
σ σ -->
=
(
2
1
)
1
/
2
(
3
2
)
1
/
4
(
4
3
)
1
/
8
(
5
4
)
1
/
16
… … -->
{\displaystyle \sigma =\left({\frac {2}{1}}\right)^{1/2}\left({\frac {3}{2}}\right)^{1/4}\left({\frac {4}{3}}\right)^{1/8}\left({\frac {5}{4}}\right)^{1/16}\dots }
which can then be compactly represented in infinite product form by:
σ σ -->
=
∏ ∏ -->
k
=
1
∞ ∞ -->
(
1
+
1
k
)
1
/
2
k
{\displaystyle \sigma =\prod _{k=1}^{\infty }\left(1+{\frac {1}{k}}\right)^{1/2^{k}}}
Another product representation is given by:[ 4]
σ σ -->
=
∏ ∏ -->
n
=
1
∞ ∞ -->
∏ ∏ -->
k
=
0
n
(
k
+
1
)
(
− − -->
1
)
k
+
n
(
n
k
)
{\displaystyle \sigma =\prod _{n=1}^{\infty }\prod _{k=0}^{n}(k+1)^{(-1)^{k+n}{\binom {n}{k}}}}
Expressions for
ln
-->
σ σ -->
{\displaystyle \ln \sigma }
(sequence A114124 in the OEIS ) include:[ 4] [ 5]
ln
-->
σ σ -->
=
∑ ∑ -->
k
=
1
∞ ∞ -->
ln
-->
k
2
k
{\displaystyle \ln \sigma =\sum _{k=1}^{\infty }{\frac {\ln k}{2^{k}}}}
ln
-->
σ σ -->
=
∑ ∑ -->
k
=
1
∞ ∞ -->
(
− − -->
1
)
k
+
1
k
Li
k
(
1
2
)
{\displaystyle \ln \sigma =\sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{k}}{\text{Li}}_{k}\left({\tfrac {1}{2}}\right)}
ln
-->
σ σ -->
2
=
∑ ∑ -->
k
=
1
∞ ∞ -->
1
2
k
(
ln
-->
(
1
+
1
k
)
− − -->
1
k
)
{\displaystyle \ln {\frac {\sigma }{2}}=\sum _{k=1}^{\infty }{\frac {1}{2^{k}}}\left(\ln \left(1+{\frac {1}{k}}\right)-{\frac {1}{k}}\right)}
Integrals
Integrals for
ln
-->
σ σ -->
{\displaystyle \ln \sigma }
are given by:[ 4] [ 6]
ln
-->
σ σ -->
=
∫ ∫ -->
0
1
1
− − -->
x
(
x
− − -->
2
)
ln
-->
x
d
x
{\displaystyle \ln \sigma =\int _{0}^{1}{\frac {1-x}{(x-2)\ln x}}dx}
ln
-->
σ σ -->
=
∫ ∫ -->
0
1
∫ ∫ -->
0
1
− − -->
x
(
2
− − -->
x
y
)
ln
-->
(
x
y
)
d
x
d
y
{\displaystyle \ln \sigma =\int _{0}^{1}\int _{0}^{1}{\frac {-x}{(2-xy)\ln(xy)}}dxdy}
The constant
σ σ -->
{\displaystyle \sigma }
arises when studying the asymptotic behaviour of the sequence[ 1]
g
0
=
1
{\displaystyle g_{0}=1}
g
n
=
n
g
n
− − -->
1
2
,
n
≥ ≥ -->
1
{\displaystyle g_{n}=ng_{n-1}^{2},\qquad n\geq 1}
with first few terms 1, 1, 2, 12, 576, 1658880, ... (sequence A052129 in the OEIS ). This sequence can be shown to have asymptotic behaviour as follows:[ 4]
g
n
∼ ∼ -->
σ σ -->
2
n
(
n
+
2
− − -->
n
− − -->
1
+
4
n
− − -->
2
− − -->
21
n
− − -->
3
+
138
n
− − -->
4
+
O
(
n
− − -->
5
)
)
− − -->
1
{\displaystyle g_{n}\sim {\sigma ^{2^{n}}}\left(n+2-n^{-1}+4n^{-2}-21n^{-3}+138n^{-4}+O(n^{-5})\right)^{-1}}
Guillera and Sondow give a representation in terms of the derivative of the Lerch transcendent
Φ Φ -->
(
z
,
s
,
q
)
{\displaystyle \Phi (z,s,q)}
:[ 6]
ln
-->
σ σ -->
=
− − -->
1
2
∂ ∂ -->
Φ Φ -->
∂ ∂ -->
s
(
1
/
2
,
0
,
1
)
{\displaystyle \ln \sigma =-{\frac {1}{2}}{\frac {\partial \Phi }{\partial s}}\!\left(1/2,0,1\right)}
If one defines the Euler-constant function (which gives Euler's constant for
z
=
1
{\displaystyle z=1}
) as:
γ γ -->
(
z
)
=
∑ ∑ -->
n
=
1
∞ ∞ -->
z
n
− − -->
1
(
1
n
− − -->
ln
-->
(
n
+
1
n
)
)
{\displaystyle \gamma (z)=\sum _{n=1}^{\infty }z^{n-1}\left({\frac {1}{n}}-\ln \left({\frac {n+1}{n}}\right)\right)}
one has:[ 7] [ 8] [ 9]
γ γ -->
(
1
2
)
=
2
ln
-->
2
σ σ -->
{\displaystyle \gamma ({\tfrac {1}{2}})=2\ln {\frac {2}{\sigma }}}
Universality
One may define a "continued binary expansion" for all real numbers in the set
(
0
,
1
]
{\displaystyle (0,1]}
, similarly to the decimal expansion or simple continued fraction expansion . This is done by considering the unique base-2 representation for a number
x
∈ ∈ -->
(
0
,
1
]
{\displaystyle x\in (0,1]}
which does not contain an infinite tail of 0's (for example write one half as
0.01111...
2
{\displaystyle 0.01111..._{2}}
instead of
0.1
2
{\displaystyle 0.1_{2}}
). Then define a sequence
(
a
k
)
⊆ ⊆ -->
N
{\displaystyle (a_{k})\subseteq \mathbb {N} }
which gives the difference in positions of the 1's in this base-2 representation. This expansion for
x
{\displaystyle x}
is now given by:[ 10]
x
=
⟨ ⟨ -->
a
1
,
a
2
,
a
3
,
.
.
.
⟩ ⟩ -->
{\displaystyle x=\langle a_{1},a_{2},a_{3},...\rangle }
The geometric means of the terms of Pi and e appear to tend to Somos' constant.
For example the fractional part of Pi we have:
{
π π -->
}
=
0.14159
26535
89793...
=
0.00100
10000
11111...
2
{\displaystyle \{\pi \}=0.14159\,26535\,89793...=0.00100\,10000\,11111..._{2}}
(sequence A004601 in the OEIS )
The first 1 occurs on position 3 after the radix point . The next 1 appears three places after the first one, the third 1 appears five places after the second one, etc. By continuing in this manner, we obtain:
π π -->
− − -->
3
=
⟨ ⟨ -->
3
,
3
,
5
,
1
,
1
,
1
,
1...
⟩ ⟩ -->
{\displaystyle \pi -3=\langle 3,3,5,1,1,1,1...\rangle }
(sequence A320298 in the OEIS )
This gives a bijective map
(
0
,
1
]
↦ ↦ -->
N
N
{\displaystyle (0,1]\mapsto \mathbb {N} ^{\mathbb {N} }}
, such that for every real number
x
∈ ∈ -->
(
0
,
1
]
{\displaystyle x\in (0,1]}
we uniquely can give:[ 10]
x
=
⟨ ⟨ -->
a
1
,
a
2
,
a
3
,
.
.
.
⟩ ⟩ -->
:⇔ ⇔ -->
x
=
∑ ∑ -->
k
=
1
∞ ∞ -->
2
− − -->
(
a
1
+
.
.
.
+
a
k
)
{\displaystyle x=\langle a_{1},a_{2},a_{3},...\rangle :\Leftrightarrow x=\sum _{k=1}^{\infty }2^{-(a_{1}+...+a_{k})}}
It can now be proven that for almost all numbers
x
∈ ∈ -->
(
0
,
1
]
{\displaystyle x\in (0,1]}
the limit of the geometric mean of the terms
a
k
{\displaystyle a_{k}}
converges to Somos' constant. That is, for almost all numbers in that interval we have:[ 2]
σ σ -->
=
lim
n
→ → -->
∞ ∞ -->
a
1
a
2
.
.
.
a
n
n
{\displaystyle \sigma =\lim _{n\to \infty }{\sqrt[{n}]{a_{1}a_{2}...a_{n}}}}
Somos' constant is universal for the "continued binary expansion" of numbers
x
∈ ∈ -->
(
0
,
1
]
{\displaystyle x\in (0,1]}
in the same sense that Khinchin's constant is universal for the simple continued fraction expansions of numbers
x
∈ ∈ -->
R
{\displaystyle x\in \mathbb {R} }
.
Generalizations
The generalized Somos' constants may be given by:
σ σ -->
t
=
∏ ∏ -->
k
=
1
∞ ∞ -->
k
1
/
t
k
=
1
1
/
t
2
1
/
t
2
3
1
/
t
3
4
1
/
t
4
… … -->
{\displaystyle \sigma _{t}=\prod _{k=1}^{\infty }k^{1/t^{k}}=1^{1/t}\;2^{1/t^{2}}\;3^{1/t^{3}}\;4^{1/t^{4}}\dots }
for
t
>
1
{\displaystyle t>1}
.
The following series holds:
ln
-->
σ σ -->
t
=
∑ ∑ -->
k
=
1
∞ ∞ -->
ln
-->
k
t
k
{\displaystyle \ln \sigma _{t}=\sum _{k=1}^{\infty }{\frac {\ln k}{t^{k}}}}
We also have a connection to the Euler-constant function :[ 8]
γ γ -->
(
1
t
)
=
t
ln
-->
(
t
(
t
− − -->
1
)
σ σ -->
t
t
− − -->
1
)
{\displaystyle \gamma ({\tfrac {1}{t}})=t\ln \left({\frac {t}{(t-1)\sigma _{t}^{t-1}}}\right)}
and the following limit, where
γ γ -->
{\displaystyle \gamma }
is Euler's constant :
lim
t
→ → -->
0
+
t
σ σ -->
t
+
1
t
=
e
− − -->
γ γ -->
{\displaystyle \lim _{t\to 0^{+}}t\sigma _{t+1}^{t}=e^{-\gamma }}
See also
References
^ a b Finch, Steven R. (2003-08-18). Mathematical Constants . Cambridge University Press. ISBN 978-0-521-81805-6 .
^ a b Neunhäuserer, Jörg (2020-10-13). "On the universality of Somos' constant". arXiv :2006.02882 [math.DS ].
^ Hirschhorn, Michael D. (2011-11-01). "A note on Somosʼ quadratic recurrence constant" . Journal of Number Theory . 131 (11): 2061– 2063. doi :10.1016/j.jnt.2011.04.010 . ISSN 0022-314X .
^ a b c d Weisstein, Eric W. "Somos's Quadratic Recurrence Constant" . MathWorld .
^ Mortici, Cristinel (2010-12-01). "Estimating the Somos' quadratic recurrence constant" . Journal of Number Theory . 130 (12): 2650– 2657. doi :10.1016/j.jnt.2010.06.012 . ISSN 0022-314X .
^ a b Guillera, Jesus; Sondow, Jonathan (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal . 16 (3): 247– 270. arXiv :math/0506319 . doi :10.1007/s11139-007-9102-0 . ISSN 1382-4090 .
^ Chen, Chao-Ping; Han, Xue-Feng (2016-09-01). "On Somos' quadratic recurrence constant" . Journal of Number Theory . 166 : 31– 40. doi :10.1016/j.jnt.2016.02.018 . ISSN 0022-314X .
^ a b Sondow, Jonathan; Hadjicostas, Petros (2007). "The generalized-Euler-constant function $\gamma(z)$ and a generalization of Somos's quadratic recurrence constant". Journal of Mathematical Analysis and Applications . 332 (1): 292– 314. arXiv :math/0610499 . Bibcode :2007JMAA..332..292S . doi :10.1016/j.jmaa.2006.09.081 .
^ Pilehrood, Khodabakhsh Hessami; Pilehrood, Tatiana Hessami (2007-01-01). "Arithmetical properties of some series with logarithmic coefficients" . Mathematische Zeitschrift . 255 (1): 117– 131. doi :10.1007/s00209-006-0015-1 . ISSN 1432-1823 .
^ a b Neunhäuserer, Jörg (2011-11-01). "On the Hausdorff dimension of fractals given by certain expansions of real numbers" . Archiv der Mathematik . 97 (5): 459– 466. doi :10.1007/s00013-011-0320-8 . ISSN 1420-8938 .