Shneider-Miles scattering

Shneider-Miles scattering (also referred to as collisional scattering[1] or quasi-Rayleigh scattering[2]) is the quasi-elastic scattering of electromagnetic radiation by charged particles in a small-scale medium with frequent particle collisions. Collisional scattering typically occurs in coherent microwave scattering of high neutral density, low ionization degree microplasmas such as atmospheric pressure laser-induced plasmas.[3] Shneider-Miles scattering is characterized by a 90° phase shift between the incident and scattered waves and a scattering cross section proportional to the square of the incident driving frequency (). Scattered waves are emitted in a short dipole radiation pattern.[1] The variable phase shift present in semi-collisional scattering regimes allows for determination of a plasma's collisional frequency through coherent microwave scattering.

History

Mikhail Shneider and Richard Miles first described the phenomenon mathematically in their 2005 work on microwave diagnostics of small plasma objects.[4] The scattering regime was experimentally demonstrated and formally named by Adam R. Patel and Alexey Shashurin and has been applied in the coherent microwave scattering diagnosis of small laser-induced plasma objects.[1]

Physical description

Electron Motion in a Plasma Object During One Half-Cycle of Incident Radiation

A plasma, consisting of neutral particles, ions, and unbound electrons, responds to the oscillating electric field of incident electromagnetic radiation primarily through the motion of electrons (ions and neutral particles can often be regarded as stationary due to their larger mass). If the frequency of the incident radiation is sufficiently low and the plasma frequency is sufficiently high (corresponding to the Rayleigh scattering regime), the electrons will travel until the plasma object becomes polarized, counteracting the incident electric field and preventing further movement until the incident field reverses direction. If the frequency of the incident radiation is sufficiently high and the plasma frequency is sufficiently low (corresponding to the Thomson scattering regime), electrons will only travel a short distance before the electric field reverses direction, making collisions with other particles unlikely during a given oscillation.

If the frequency on the incident radiation is intermediate and a high density of neutral particles and ions is present, electrons will travel far enough to collide many times with other particles but not far enough to significantly polarize the plasma object. This characterizes the collisional scattering regime. The linear oscillation of unbound electrons in a relatively-small space gives rise to a short-dipole radiation pattern.

This is analogous to a spring-mass-damper system, where the polarization of the plasma object creates the restoring force and the drag due to collisions with other particles creates the damping force. The phase shift of the scattered wave is 90º in the Shneider-Miles regime due to the drag force being dominant.

Note that, in this context, Rayleigh scattering is regarded as volumetric small particle scattering rather than an even broader short-dipole approximation of the radiation. Otherwise, Thomson scattering would fall under the banner of "Rayleigh". Mie scattering experiences a similar ambiguity.

Mathematical description

Scattering Phase Shifts Become Collisional at High Collisional Frequencies and Low Plasma Frequencies
Scattering Cross Section and Phase Shift for Electrons with 11GHz Incident Microwaves[2]

The scattering cross section of an object () is defined by the time-averaged power of the scattered wave () divided by the intensity of the incident wave (): .

Starting with the assumptions that a plasma object is small relative to the incident wavelength, thin relative to the skin depth, unmagnetized, and homogenous, the scattering cross-section of the plasma object can be determined by the following equation, where is the electron charge, is the electron mass, is the number of unbound electrons in the plasma object, is the geometrically-determined depolarization factor,[5] is the incident wave circular frequency, is the plasma frequency, and is the effective momentum-transfer collisional frequency (not to be confused with collisional frequency).[6][7]

[1]

(The above equation is derived from the Drude-Lorentz-Sommerfeld model. It neglects transient effects of electron motion and is only qualitatively applicable to Rayleigh scattering due to neglecting evanescence effects - strict consideration of boundary conditions is often required to capture the case of negative permittivity.[8]). The total cross section can related to the cross section of an individual electron () according to the equation , since the electron motion will be in phase assuming that the plasma object is small relative to the incident wavelength.

The scattering regime is determined by the dominant term in the denominator. Collisional scattering refers to the assumption that , allowing the total scattering cross section to be expressed as:

[1]

The collisional scattering cross-section can also be expressed in terms of the Thomson scattering cross section (), which is independent of the plasma geometry and collisional frequency according to the following equation.

[1]

References

  1. ^ a b c d e f Patel, Adam Robert (2022-08-01). CONSTRUCTIVE (COHERENT) ELASTIC MICROWAVE SCATTERING-BASED PLASMA DIAGNOSTICS AND APPLICATIONS TO PHOTOIONIZATION (thesis thesis). Purdue University Graduate School.
  2. ^ a b Shashurin, A. (2023). "Coherent microwave scattering for diagnostics of small plasma objects: A review". Physics of Plasmas. 30 (6). doi:10.1063/5.0147927.
  3. ^ Patel, Adam (2021). "Thomson and collisional regimes of in-phase coherent microwave scattering off gaseous microplasmas". Scientific Reports. 11 (1). doi:10.1038/s41598-021-02500-y. PMC 8642454 – via ResearchGate.
  4. ^ "Microwave diagnostics of small plasma objects". pubs.aip.org. Retrieved 2023-10-23.
  5. ^ "A generalization of the dielectric ellipsoid problem". journals.aps.org. Retrieved 2023-10-23.
  6. ^ Jahn, Robert (2006). Physics of Electric Propulsion. Dover Publications. pp. 45–51. ISBN 978-0486450407.
  7. ^ Gas Discharge Physics.
  8. ^ Jackson, J. D.; Fox, Ronald F. (1999-09-01). "Classical Electrodynamics, 3rd ed". American Journal of Physics. 67 (9): 841–842. doi:10.1119/1.19136. ISSN 0002-9505.

Read other articles:

نشيد سويسرا الوطني   البلد سويسرا  استمع للنشيد   تعديل مصدري - تعديل   يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) صورة للحن الأصلي هو نشيد كت...

 

Country of the Warsaw Pact and Eastern Bloc from 1947 to 1989 This article is about the Cold War-era Polish government. For the provisional 1918 government, see Provisional People's Government of the Republic of Poland. You can help expand this article with text translated from the corresponding article in Polish. (September 2021) Click [show] for important translation instructions. View a machine-translated version of the Polish article. Machine translation, like DeepL or Google Transla...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) هيليارد بي جنكينز   معلومات شخصية تاريخ الميلاد 29 مارس 1922  تاريخ الوفاة 23 أغسطس 1992 (70 سنة)   مواطنة الولايات المتحدة  الحياة العملية المهنة ناشط  ا

Lage der kaspischen Senke Die Kaspische Senke ist eine etwa 600.000 km² große Depression innerhalb der Aralo-Kaspischen Niederung im südöstlichen Europa und westlichen Asien. Sie umfasst nicht nur die feuchten und sumpfigen Schwemmgebiete von Ural und Wolga nördlich des Kaspischen Meeres, sondern auch das gesamte bis zu 1023 m tiefe auf 995 m Tiefe mit Wasser gefüllte Becken dieses Sees und dessen unter dem Meeresspiegel liegende Uferbereiche. Die tiefste – trocken...

 

Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (жовтень 2011) Панов Микола МиколайовичНародився 11 (24) серпня 1903 або 1903[1&...

 

Achères-la-ForêtKomuneGereja di Achères-la-ForêtAchères-la-Forêt Lokasi di Region Île-de-France Achères-la-Forêt Koordinat: 48°20′46″N 2°33′57″E / 48.3461°N 2.5658°E / 48.3461; 2.5658Koordinat: 48°20′46″N 2°33′57″E / 48.3461°N 2.5658°E / 48.3461; 2.5658NegaraPrancisRegionÎle-de-FranceDepartemenSeine-et-MarneArondisemenFontainebleauKantonFontainebleauAntarkomunePays de FontainebleauPemerintahan • Wali...

Painting by Giovanni Fattori This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Quadrato di Villafranca – news · newspapers · books · scholar · JSTOR (March 2019) (Learn how and when to remove this template message) The Quadrato di VillafrancItalian: Esercitazione di TiroArtistGiovanni FattoriYear1876 - 1880MediumOil on canvasDi...

 

?Середньоазійська кобра Охоронний статус Даних недостатньо (МСОП 3.1) Біологічна класифікація Домен: Еукаріоти (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Інфратип: Хребетні (Vertebrata) Клас: Зауропсиди (Sauropsida) Ряд: Лускаті (Squamata) Підряд: Змії (Serpentes) Родина: Аспідові...

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2011) (Learn how and when to remove this template message) A 1967 stamp of Japan featuring a painting of Mount Fuji. The story of Japan's postal system with its postage stamps and related postal history goes back centuries. The country's first modern postal service got started in 1871, with mail professio...

2005 American filmConfessions of an Action StarDirected byBrad MartinWritten byDavid LeitchProduced byTodd GrossmanZachary KahnAlan D. LeeJeanine RohnBobby ShengKaren Mayeda VranekNina YangSteve D. YangStarringDavid LeitchAngelina JolieCarrie-Anne MossHugo WeavingEric RobertsDax ShepardDebbie AllenLee ArenbergCinematographyBridger NielsonEdited byArt ChudabalaMark DavidTodd GrossmanMark HosackMusic byChristopher LennertzDistributed byVivendi EntertainmentLightyear EntertainmentRelease dates J...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Tesseract film – news · newspapers · books · scholar · JSTOR (May 2017) (Learn how and when to remove this template message) Japanese filmThe TesseractPromotional poster for the Sundance Channel.Directed byOxide PangScreenplay byOxide PangPatrick NeateBased onThe Tesser...

 

Panorama, Fermo (2008) An Syudad han Fermo amo an kapital han lalawigan han Fermo ha Italya. khlMarche · Mga comune han Fermo Altidona · Amandola · Belmonte Piceno · Campofilone · Falerone · Fermo · Francavilla d'Ete · Grottazzolina · Lapedona · Magliano di Tenna · Massa Fermana · Monsampietro Morico · Montappone · Montefalcone Appennino · Montefortino · Monte Giberto · Montegiorgio · Montegranaro · Monteleone di Fermo · Montelparo · Monte Rinaldo · Monterubbiano · ...

BBC radio programme The Media ShowGenreCurrent affairs, MediaRunning time28 minsCountry of originUnited KingdomLanguage(s)EnglishHome stationBBC Radio 4TV adaptationsBBC News ChannelProduced byRichard HooperRecording studioBroadcasting HouseOriginal release1 October 2008 –PresentNo. of episodes431(to 23 December 2016[1])WebsiteBBC Radio 4PodcastThe Media Show podcast The Media Show is a weekly British current affairs radio programme and podcast on BBC Radio 4 which examines the...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: President and Fellows of Harvard College – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this template message) The President and Fellows of Harvard College (also called the Harvard Corporation or just the Corporation...

 

Railway station Chhattisgarh This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (January 2019) (Learn how and when to ...

Cultural region of the United States For other uses, see Cotton Belt (disambiguation). The Cotton Belt region in dark red, and cotton growing areas in pink. The Cotton Belt is a region of the Southern United States where cotton was the predominant cash crop from the late 18th century into the 20th century.[1] Before the invention of the cotton gin in 1793, cotton production was limited to coastal plain areas of South Carolina and Georgia,[1] and, on a smaller scale, along the ...

 

Municipality in Marinduque, Philippines Municipality in Mimaropa, PhilippinesBuenavistaMunicipalityMunicipality of BuenavistaMunicipal Hall FlagSealNickname: Malindig CountryMap of Marinduque with Buenavista highlightedOpenStreetMapBuenavistaLocation within the PhilippinesCoordinates: 13°15′N 121°57′E / 13.25°N 121.95°E / 13.25; 121.95CountryPhilippinesRegionMimaropaProvinceMarinduqueDistrict Lone districtFoundedNovember 9, 1918Barangays15 (see Barangays)G...

 

Nigerian-American basketball player (born 1999) Udoka AzubuikeAzubuike at the 2016 McDonald's All-American GameNo. 27 – Phoenix SunsPositionCenter / power forwardLeagueNBAPersonal informationBorn (1999-09-17) September 17, 1999 (age 24)Lagos, NigeriaListed height6 ft 11 in (2.11 m)Listed weight270 lb (122 kg)Career informationHigh schoolPotter's House Christian Academy(Jacksonville, Florida)CollegeKansas (2016–2020)NBA draft2020: 1st round, 27th overa...

ゲーブ・キャプラーGabe Kapler サンフランシスコ・ジャイアンツでの監督時代(2023年6月13日)基本情報国籍 アメリカ合衆国出身地 カリフォルニア州ロサンゼルス市ハリウッド生年月日 (1975-07-31) 1975年7月31日(48歳)身長体重 6' 2 =約188 cm190 lb =約86.2 kg選手情報投球・打席 右投右打ポジション 外野手プロ入り 1995年 MLBドラフト57巡目初出場 MLB / 1998年9月20日NPB / 2005年4月1日...

 

Начинающим Сообщество Порталы Избранное Проекты Запросы Оценивание География История Общество Персоналии Религия Спорт Техника Наука Искусство Философия править Курская область Ку́рская о́бласть — область в России, входит в состав Центрального федерального окру...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!