Semi-deterministic Büchi automaton

In automata theory, a semi-deterministic Büchi automaton (also known as Büchi automaton deterministic in the limit,[1] or limit-deterministic Büchi automaton[2]) is a special type of Büchi automaton. In such an automaton, the set of states can be partitioned into two subsets: one subset forms a deterministic automaton and also contains all the accepting states.

For every Büchi automaton, a semi-deterministic Büchi automaton can be constructed such that both recognize the same ω-language. But, a deterministic Büchi automaton may not exist for the same ω-language.

Motivation

In standard model checking against linear temporal logic (LTL) properties, it is sufficient to translate an LTL formula into a non-deterministic Büchi automaton. But, in probabilistic model checking, LTL formulae are typically translated into deterministic Rabin automata (DRA), as for instance in the PRISM tool. However, a fully deterministic automaton is not needed. Indeed, semi-deterministic Büchi automata are sufficient in probabilistic model checking.

Formal definition

A Büchi automaton (Q,Σ,∆,Q0,F) is called semi-deterministic if Q is the union of two disjoint subsets N and D such that F ⊆ D and, for every d ∈ D, automaton (D,Σ,∆,{d},F) is deterministic.

Transformation from a Büchi automaton

Any given Büchi automaton can be transformed into a semi-deterministic Büchi automaton that recognizes the same language, using following construction.

Suppose A=(Q,Σ,∆,Q0,F) is a Büchi automaton. Let Pr be a projection function which takes a set of states S and a symbol a ∈ Σ and returns set of states {q' | ∃q ∈ S and (q,a,q') ∈ ∆ }. The equivalent semi-deterministic Büchi automaton is A'=(N ∪ D,Σ,∆',Q'0,F'), where

  • N = 2Q and D = 2Q×2Q
  • Q'0 = {Q0}
  • ∆' = ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4
    • 1 = {( S, a, S' ) | S'=Pr(S,a) }
    • 2 = {( S, a, ({q'},∅) ) | ∃q ∈ S and (q,a,q') ∈ ∆ }
    • 3 = {( (L,R), a, (L',R') ) | L≠R and L'=Pr(L,a) and R'=(L'∩F)∪Pr(R,a) }
    • 4 = {( (L,L), a, (L',R') ) | L'=Pr(L,a) and R'=(L'∩F) }
  • F' = {(L,L) | L≠∅ }

Note the structure of states and transitions of A′. States of A′ are partitioned into N and D. An N-state is defined as an element of the power set of states of A. A D-state is defined as a pair of elements of power set of states of A. The transition relation of A' is the union of four parts: ∆1, ∆2, ∆3, and ∆4. The ∆1-transitions only take A' from a N-state to a N-state. Only the ∆2-transitions can take A' from an N-state to a D-state. Note that only the ∆2-transitions can cause non-determinism in A' . The ∆3 and ∆4-transitions take A' from a D-state to a D-state. By construction, A' is a semi-deterministic Büchi automaton. The proof of L(A')=L(A) follows.

For an ω-word w=a1,a2,... , let w(i,j) be the finite segment ai+1,...,aj-1,aj of w.

L(A') ⊆ L(A)

Proof: Let w ∈ L(A'). The initial state of A' is an N-state and all the accepting states in F' are D-states. Therefore, any accepting run of A' must follow ∆1 for finitely many transitions at start, then take a transition in ∆2 to move into D-states, and then take ∆3 and ∆4 transitions for ever. Let ρ' = S0,...,Sn-1,(L0,R0),(L1,R1),... be such accepting run of A' on w.

By definition of ∆2, L0 must be a singleton set. Let L0 = {s}. Due to definitions of ∆1 and ∆2, there exist a run prefix s0,...,sn-1,s of A on word w(0,n) such that sj ∈ Sj. Since ρ' is an accepting run of A' , some states in F' are visited infinitely often. Therefore, there exist a strictly increasing and infinite sequence of indexes i0,i1,... such that i0=0 and, for each j > 0, Lij=Rij and Lij≠∅. For all j > 0, let m = ij-ij-1. Due to definitions of ∆3 and ∆4, for every qm ∈ Lij, there exist a state q0 ∈ Lij-1 and a run segment q0,...,qm of A on the word segment w(n+ij-1,n+ij) such that, for some 0 < k ≤ m, qk ∈ F. We can organize the run segments collected so for via following definitions.

  • Let predecessor(qm,j) = q0.
  • Let run(s,0)= s0,...,sn-1,s and, for j > 0, run(qm,j)= q1,...,qm

Now the above run segments will be put together to make an infinite accepting run of A. Consider a tree whose set of nodes is j≥0 Lij × {j}. The root is (s,0) and parent of a node (q,j) is (predecessor(q,j), j-1). This tree is infinite, finitely branching, and fully connected. Therefore, by Kőnig's lemma, there exists an infinite path (q0,0),(q1,1),(q2,2),... in the tree. Therefore, following is an accepting run of A

run(q0,0)⋅run(q1,1)⋅run(q2,2)⋅...

Hence, by infinite pigeonhole principle, w is accepted by A.

L(A) ⊆ L(A')

Proof: The definition of projection function Pr can be extended such that in the second argument it can accept a finite word. For some set of states S, finite word w, and symbol a, let Pr(S,aw) = Pr(Pr(S,a),w) and Pr(S,ε) = S. Let w ∈ L(A) and ρ=q0,q1,... be an accepting run of A on w. First, we will prove following useful lemma.

Lemma 1
There is an index n such that qn ∈ F and, for all m ≥ n there exist a k > m, such that Pr({ qn },w(n,k)) = Pr({ qm },w(m,k)).
Proof: Pr({ qn },w(n,k)) ⊇ Pr({ qm },w(m,k)) holds because there is a path from qn to qm. We will prove the converse by contradiction. Lets assume for all n, there is a m ≥ n such that for all k > m, Pr({ qn },w(n,k)) ⊃ Pr({ qm },w(m,k)) holds. Lets suppose p is the number of states in A. Therefore, there is a strictly increasing sequence of indexes n0,n1,... ,np such that, for all k > np, Pr({ qni },w(ni,k)) ⊃ Pr({ qni+1 },w(ni+1,k)). Therefore,Pr({ qnp },w(np,k)) = ∅. Contradiction.

In any run, A' can only once make a non-deterministic choice that is when it chooses to take a Δ2 transition and rest of the execution of A' is deterministic. Let n be such that it satisfies lemma 1. We make A' to take Δ2 transition at nth step. So, we define a run ρ'=S0,...,Sn-1,({qn},∅),(L1,R1),(L2,R2),... of A' on word w. We will show that ρ' is an accepting run. Li ≠ ∅ because there is an infinite run of A passing through qn. So, we are only left to show that Li=Ri occurs infinitely often. Suppose contrary then there exists an index m such that, for all i ≥ m, Li≠Ri. Let j > m such that qj+n ∈ F therefore qj+n ∈ Rj. By lemma 1, there exist k > j such that Lk = Pr({ qn },w(n,k+n)) = Pr({ qj+n },w(j+n,k+n)) ⊆ Rk. So, Lk=Rk. A contradiction has been derived. Hence, ρ' is an accepting run and w ∈ L(A').

References

  1. ^ Courcoubetis, Costas; Yannakakis, Mihalis (July 1995). "The Complexity of Probabilistic Verification". J. ACM. 42 (4): 857–907. doi:10.1145/210332.210339. ISSN 0004-5411. S2CID 17872656.
  2. ^ Sickert, Salomon; Esparza, Javier; Jaax, Stefan; Křetínský, Jan (2016). Chaudhuri, Swarat; Farzan, Azadeh (eds.). "Limit-Deterministic Büchi Automata for Linear Temporal Logic". Computer Aided Verification. Lecture Notes in Computer Science. 9780. Springer International Publishing: 312–332. doi:10.1007/978-3-319-41540-6_17. ISBN 978-3-319-41540-6.

Read other articles:

Majalah Forbes setiap tahun merilis peringkat miliarder perempuan terkaya di dunia. Daftar ini memakai pemeringkatan statis yang diterbitkan setahun sekali oleh Forbes, biasanya keluar bulan Maret. Sebanyak 256 perempuan masuk dalam daftar miliarder dunia hingga 6 Maret 2018[update].[1] Pada Maret 2017, ada 227 miliarder perempuan, naik dari 187 orang pada Juni 2015.[2] Sejak Liliane Bettencourt meninggal dunia tahun 2017, anak dan pewaris satu-satunya, Fran...

 

Senapan lontak atau musket Senapan lontak atau senapan lantak yang juga dikenal di luar negeri dengan nama musket adalah senjata yang populer di antara abad ke-15 sampai pertengahan abad ke-19. Senapan lontak hanya dapat ditembakkan sekali saja, setelah diisi dengan amunisi bola timah dan mesiu, dan diisi dari depan moncong laras senapan. Etimologi dan sejarah Istilah senapan lontak berasal dari kata senapan dan lantak. Kata senapan adalah korupsi dari kata Belanda snappaan.[1] Lantak...

 

Діль Dill —  громада  — Вид Діль Герб Координати: 49°54′58″ пн. ш. 7°20′49″ сх. д. / 49.9162333° пн. ш. 7.346972° сх. д. / 49.9162333; 7.346972 Країна  Німеччина Земля Рейнланд-Пфальц Район Рейн-Гунсрюк Об'єднання громад Кірхберг Площа  - Повна 5,...

  لمعانٍ أخرى، طالع الرجل الخفي (توضيح). الرجل الخفيThe Invisible Man (بالإنجليزية) معلومات عامةالصنف الفني  القائمة ... فيلم رعب — فيلم مقتبس من رواية — فيلم دراما — فيلم خيال علمي — فيلم إثارة المواضيع  القائمة ... toxic relationship (en) [1] — ملاحقة[1] — breakup (en) [1] — العن...

 

Japanese manga series by Yoshihiro Takahashi WeedFirst tankōbon volume cover, featuring Weed (front)銀牙伝説WEED(ウィード)(Ginga Densetsu Wīdo) MangaWritten byYoshihiro TakahashiPublished byNihon BungeishaEnglish publisherNA: ComicsOne(former)MagazineWeekly Manga GorakuDemographicSeinenOriginal runMay 1, 1999 – July 1, 2009Volumes60 (List of volumes) Anime television seriesGinga Densetsu WeedDirected byToshiyuki KatoStudioStudio DeenOriginal networkAnimaxOrigina...

 

يتم ارتداء خواتم الطهارة للشباب الملتزمين عدم ممارسة الجنس قبل الزاوج. الامتناع عن الملذات هو فعل طوعي يتضمن الامتناع عن الانغماس في الرغبات أو الشهوات لنشاط جسدي معين والذي عادة ما يجلب المتعة للجسد.[1][2][3] معظم هذه الأنشطة يتضمن الامتناع عن الجماع، تناول الكحو

Jesús Navas Informasi pribadiNama lengkap Jesús NavasTanggal lahir 21 November 1985 (umur 38)Tempat lahir Los Palacios, SpanyolTinggi 1,70 m (5 ft 7 in)Posisi bermain GelandangInformasi klubKlub saat ini SevillaNomor 15Karier junior1998–2000 Los Palacios2000–2003 SevillaKarier senior*Tahun Tim Tampil (Gol)2003 Sevilla B 33 (3)2003–2013 Sevilla 280 (23)2013–2017 Manchester City 42 (5)2017– Sevilla 7 (1)Tim nasional‡2004–2005 Spanyol U-21 5 (0)2009– Spanyol...

 

  Cochinilla blanca o algodonosa Maconellicoccus hirsutus, cochinilla algodonosa rosada del hibiscoTaxonomíaReino: AnimaliaFilo: ArthropodaClase: InsectaOrden: HemipteraSuborden: SternorrhynchaSuperfamilia: CoccoideaFamilia: PseudococcidaeHeymons, 1915 [1]​Géneros See text[2]​ [editar datos en Wikidata] Las cochinillas harinosas, cochinillas blancas o cochinillas algodonosas son insectos en la familia Pseudococcidae, insectos escamas que habitan en climas c...

 

Map of the Poltava Oblast.This is a list of villages of the Poltava Oblast (province) of central Ukraine. Kremenchuk Raion (Кременчуцький район) Biletskivka Bondari Burty Checheleve Chervona Znamianka Chykalivka Demydivka Dzerzhynske Fedorenky Horyslavtsi Hun'ky Kamiani Potoky Karpivka Keleberda Kindrivka Kobeliachok Korzhivka Kovali Kovalivka Kramarenky Kryvushi Lytvynenky Makhnivka Maksymivka Mala Kokhnivka Malamivka Malyky Mayborodivka Mykhaialenky Mylovydivka Myrne Naide...

1940s British turbojet aircraft engine ASX Armstrong Siddeley ASX turbojet on display at the Rolls-Royce Heritage Trust, Derby Type Experimental turbojet National origin United Kingdom Manufacturer Armstrong Siddeley First run April 1943 Major applications Avro Lancaster (test bed only) Developed into Armstrong Siddeley Python The Armstrong Siddeley ASX was an early axial flow jet engine built by Armstrong Siddeley that first ran in April 1943.[1] Only a single prototype was construct...

 

Zamek w Dreźnie Zamek w Dreźnie (2008) Państwo  Niemcy Kraj związkowy  Saksonia Miejscowość Drezno Styl architektoniczny renesans, barok Położenie na mapie DreznaZamek w Dreźnie Położenie na mapie NiemiecZamek w Dreźnie Położenie na mapie SaksoniiZamek w Dreźnie 51°03′10″N 13°44′13″E/51,052778 13,736944 Multimedia w Wikimedia Commons Strona internetowa Galeria: ZamekDrezno. ZamekDrezno. ZamekDrezno.ZamekDrezno. Zamek Rezydencja Wettynów w Dreźnie...

 

Municipal unit in Fier, AlbaniaPortëzMunicipal unitPortëzCoordinates: 40°42′N 19°35′E / 40.700°N 19.583°E / 40.700; 19.583Country AlbaniaCountyFierMunicipalityFierPopulation (2011) • Municipal unit8,259Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Portëz is a village and a former municipality in the Fier County, southwestern Albania. At the 2015 local government reform it became a subdivision of the municipality Fier.[...

Prime minister of Cochin Edakkunni Ikkanda Warrier3rd Prime Minister of CochinIn office20 September 1948 – 30 June 1949MonarchKerala Varma VIIPreceded byT. K. NairSucceeded byPosition AbolishedConstituencyOllur, Thrissur Personal detailsBorn1890Ollur, Thrissur, KeralaCitizenshipIndianNationalityIndianPolitical partyIndian National CongressSpouseLakshmikuttyammaRelationsMarriedChildren4ParentsMeledathu Sankaran NamboothiriEdakkunni Parvathikutty WarasiarResidenceOllurAlma materDr. A...

 

Sint-Philomenakerk De Sint-Philomenakerk (ook: Sint-Filomenakerk) is de parochiekerk van Kotem, gelegen aan de Grotestraat. Kotem, behorende tot Boorsem, werd pas in 1889 een zelfstandige parochie. Er bestond hier sinds 1834 een Sint-Philomenakapel, maar in 1891 begon men met de bouw van een kerk, ontworpen door Mathieu Christiaens. Deze kerk zou de kapel vervangen. Het is een neoromaanse bakstenen kruisbasiliek. De vierkante toren heeft drie geledingen en wordt gedekt door een hoog schilddak...

 

Borough in Devon, England This article is about the local government district in Devon, England. For other uses, see Torbay (disambiguation). English Riviera and The English Riviera redirect here. For the geological attraction, see English Riviera Geopark. For the Metronomy album, see The English Riviera (album). Not to be confused with Torquay, a town that is part of Torbay. Borough and unitary authority area in EnglandTorbay Borough of TorbayBorough and unitary authority areaTorquay Town Ha...

Hindu temple in Tamil Nadu, India Yeri Katha Ramar TempleReligionAffiliationHinduismDistrictChengalpattu districtDeityRamaLocationLocationMaduranthakamStateTamil NaduCountryIndiaGeographic coordinates12°29′11″N 79°53′28″E / 12.48639°N 79.89111°E / 12.48639; 79.89111 Eri-Katha Raamar Temple is a Hindu temple dedicated to Rama located in the town of Maduranthakam, Tamil Nadu, India.[1] The temple is glorified by Ramanujar, Thirumalisai Alvar and class...

 

Ethiopian author and polymath Kebede MichaelKebede in the 1960sBorn(1916-11-02)2 November 1916Menz, Shewa Province, Ethiopian EmpireDied12 November 1998(1998-11-12) (aged 82)Alma materAlliance Éthio-Française SchoolOccupations Author Playwright Poet Historian Novelist Journalist Years active1929–1998Notable workTarik Ena Misale: Ethiopian Tale (2013)AwardsHonorary Doctorate (Addis Ababa University) Kebede Michael (Amharic: ከበደ ሚካኤል; 2 November 1916 – 12 Nove...

 

この名前は、スペイン語圏の人名慣習に従っています。第一姓(父方の姓)はガルシア、第二姓(母方の姓)はロルカです。 フェデリコ・ガルシーア・ロルカ マドリード市サンタ・アナ広場のロルカ像 フェデリーコ・デル・サグラード・コラソン・デ・ヘスス・ガルシーア・ロルカ(Federico del Sagrado Corazón de Jesús García Lorca、1898年6月5日 - 1936年8月19日)は、スペイン...

2002 studio album by Casino Versus JapanWhole Numbers Play the BasicsStudio album by Casino Versus JapanReleasedSeptember 17, 2002 (2002-09-17)Recorded2001Length45:04LabelCarparkProducerErik Kowalski[1]Casino Versus Japan chronology Go Hawaii(2000) Whole Numbers Play the Basics(2002) Hitori + Kaiso (1998–2001)(2004) Whole Numbers Play the Basics is an album by Erik Kowalski under the alias of Casino Versus Japan. It was released in 2002 by Carpark Records. On ...

 

Intentional killing of a monarch For other uses, see Regicide (disambiguation). King assassination redirects here. For the assassination of Martin Luther King Jr., see Assassination of Martin Luther King Jr. The examples and perspective in this article deal primarily with the United Kingdom and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (July 2022) (Learn how and when to remove th...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!