Seiberg–Witten theory

In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action (for massless degrees of freedom), of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field (in particle theory language) or connection (in geometric language).

The theory was studied in detail by Nathan Seiberg and Edward Witten (Seiberg & Witten 1994).

Seiberg–Witten curves

In general, effective Lagrangians of supersymmetric gauge theories are largely determined by their holomorphic (really, meromorphic) properties and their behavior near the singularities. In gauge theory with extended supersymmetry, the moduli space of vacua is a special Kähler manifold and its Kähler potential is constrained by above conditions.

In the original approach,[1][2] by Seiberg and Witten, holomorphy and electric-magnetic duality constraints are strong enough to almost uniquely constrain the prepotential (a holomorphic function which defines the theory), and therefore the metric of the moduli space of vacua, for theories with SU(2) gauge group.

More generally, consider the example with gauge group SU(n). The classical potential is

where is a scalar field appearing in an expansion of superfields in the theory. The potential must vanish on the moduli space of vacua by definition, but the need not. The vacuum expectation value of can be gauge rotated into the Cartan subalgebra, making it a traceless diagonal complex matrix .

Because the fields no longer have vanishing vacuum expectation value, other fields become massive due to the Higgs mechanism (spontaneous symmetry breaking). They are integrated out in order to find the effective U(1) gauge theory. Its two-derivative, four-fermions low-energy action is given by a Lagrangian which can be expressed in terms of a single holomorphic function on superspace as follows:

where

and is a chiral superfield on superspace which fits inside the chiral multiplet .

The first term is a perturbative loop calculation and the second is the instanton part where labels fixed instanton numbers. In theories whose gauge groups are products of unitary groups, can be computed exactly using localization[3] and the limit shape techniques.[4]

The Kähler potential is the kinetic part of the low energy action, and explicitly is written in terms of as

From we can get the mass of the BPS particles.

One way to interpret this is that these variables and its dual can be expressed as periods of a meromorphic differential on a Riemann surface called the Seiberg–Witten curve.

N = 2 supersymmetric Yang–Mills theory

Before the low energy, or infrared, limit is taken, the action can be given in terms of a Lagrangian over superspace with field content , which is a single vector/chiral superfield in the adjoint representation of the gauge group, and a holomorphic function of called the prepotential. Then the Lagrangian is given by where are coordinates for the spinor directions of superspace.[5] Once the low energy limit is taken, the superfield is typically labelled by instead.

The so called minimal theory is given by a specific choice of , where is the complex coupling constant.

The minimal theory can be written on Minkowski spacetime as with making up the chiral multiplet.

Geometry of the moduli space

For this section fix the gauge group as . A low-energy vacuum solution is an vector superfield solving the equations of motion of the low-energy Lagrangian, for which the scalar part has vanishing potential, which as mentioned earlier holds if (which exactly means is a normal operator, and therefore diagonalizable). The scalar transforms in the adjoint, that is, it can be identified as an element of , the complexification of . Thus is traceless and diagonalizable so can be gauge rotated to (is in the conjugacy class of) a matrix of the form (where is the third Pauli matrix) for . However, and give conjugate matrices (corresponding to the fact the Weyl group of is ) so both label the same vacuum. Thus the gauge invariant quantity labelling inequivalent vacua is . The (classical) moduli space of vacua is a one-dimensional complex manifold (Riemann surface) parametrized by , although the Kähler metric is given in terms of as

where . This is not invariant under an arbitrary change of coordinates, but due to symmetry in and , switching to local coordinate gives a metric similar to the final form but with a different harmonic function replacing . The switching of the two coordinates can be interpreted as an instance of electric-magnetic duality (Seiberg & Witten 1994).

Under a minimal assumption of assuming there are only three singularities in the moduli space at and , with prescribed monodromy data at each point derived from quantum field theoretic arguments, the moduli space was found to be , where is the hyperbolic half-plane and is the second principal congruence subgroup, the subgroup of matrices congruent to 1 mod 2, generated by This space is a six-fold cover of the fundamental domain of the modular group and admits an explicit description as parametrizing a space of elliptic curves given by the vanishing of which are the Seiberg–Witten curves. The curve becomes singular precisely when or .

Graph of metric function on moduli space parametrized by , with evident singularities at . The function is defined using the complete elliptic integral of the first kind (Hunter-Jones 2012).

Monopole condensation and confinement

The theory exhibits physical phenomena involving and linking magnetic monopoles, confinement, an attained mass gap and strong-weak duality, described in section 5.6 of Seiberg and Witten (1994). The study of these physical phenomena also motivated the theory of Seiberg–Witten invariants.

The low-energy action is described by the chiral multiplet with gauge group , the residual unbroken gauge from the original symmetry. This description is weakly coupled for large , but strongly coupled for small . However, at the strongly coupled point the theory admits a dual description which is weakly coupled. The dual theory has different field content, with two chiral superfields , and gauge field the dual photon , with a potential that gives equations of motion which are Witten's monopole equations, also known as the Seiberg–Witten equations at the critical points where the monopoles become massless.

In the context of Seiberg–Witten invariants, one can view Donaldson invariants as coming from a twist of the original theory at giving a topological field theory. On the other hand, Seiberg–Witten invariants come from twisting the dual theory at . In theory, such invariants should receive contributions from all finite but in fact can be localized to the two critical points, and topological invariants can be read off from solution spaces to the monopole equations.[6]

Relation to integrable systems

The special Kähler geometry on the moduli space of vacua in Seiberg–Witten theory can be identified with the geometry of the base of complex completely integrable system. The total phase of this complex completely integrable system can be identified with the moduli space of vacua of the 4d theory compactified on a circle. The relation between Seiberg–Witten theory and integrable systems has been reviewed by Eric D'Hoker and D. H. Phong.[7] See Hitchin system.

Seiberg–Witten prepotential via instanton counting

Using supersymmetric localisation techniques, one can explicitly determine the instanton partition function of super Yang–Mills theory. The Seiberg–Witten prepotential can then be extracted using the localization approach[8] of Nikita Nekrasov. It arises in the flat space limit , , of the partition function of the theory subject to the so-called -background. The latter is a specific background of four dimensional supergravity. It can be engineered, formally by lifting the super Yang–Mills theory to six dimensions, then compactifying on 2-torus, while twisting the four dimensional spacetime around the two non-contractible cycles. In addition, one twists fermions so as to produce covariantly constant spinors generating unbroken supersymmetries. The two parameters , of the -background correspond to the angles of the spacetime rotation.

In Ω-background, all the non-zero modes can be integrated out, so the path integral with the boundary condition at can be expressed as a sum over instanton number of the products and ratios of fermionic and bosonic determinants, producing the so-called Nekrasov partition function. In the limit where , approach 0, this sum is dominated by a unique saddle point. On the other hand, when , approach 0,

holds.

See also

References

  1. ^ Seiberg, Nathan; Witten, Edward (1994). "Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory". Nucl. Phys. B. 426 (1): 19–52. arXiv:hep-th/9407087. Bibcode:1994NuPhB.426...19S. doi:10.1016/0550-3213(94)90124-4. S2CID 14361074.
  2. ^ Seiberg, Nathan; Witten, Edward (1994). "Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD". Nucl. Phys. B. 431 (3): 484–550. arXiv:hep-th/9408099. Bibcode:1994NuPhB.431..484S. doi:10.1016/0550-3213(94)90214-3. S2CID 17584951.
  3. ^ Nekrasov, Nikita (2004). "Seiberg-Witten Prepotential from Instanton Counting". Advances in Theoretical and Mathematical Physics. 7 (5): 831–864. arXiv:hep-th/0206161. doi:10.4310/ATMP.2003.v7.n5.a4. S2CID 2285041.
  4. ^ Nekrasov, Nikita; Okounkov, Andrei (2003). "Seiberg-Witten theory and random partitions". Prog. Math. Progress in Mathematics. 244: 525–596. arXiv:hep-th/0306238. Bibcode:2003hep.th....6238N. doi:10.1007/0-8176-4467-9_15. ISBN 978-0-8176-4076-7. S2CID 14329429.
  5. ^ Seiberg, Nathan (May 1988). "Supersymmetry and non-perturbative beta functions". Physics Letters B. 206 (1): 75–80. doi:10.1016/0370-2693(88)91265-8.
  6. ^ Witten, Edward (1994). "Monopoles and four-manifolds". Mathematical Research Letters. 1 (6): 769–796. arXiv:hep-th/9411102. doi:10.4310/MRL.1994.v1.n6.a13.
  7. ^ D'Hoker, Eric; Phong, D. H. (1999-12-29). "Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems". Theoretical Physics at the End of the Twentieth Century. pp. 1–125. arXiv:hep-th/9912271. Bibcode:1999hep.th...12271D. doi:10.1007/978-1-4757-3671-7_1. ISBN 978-1-4419-2948-8. S2CID 117202391.
  8. ^ Nekrasov, Nikita (2004). "Seiberg-Witten Prepotential from Instanton Counting". Advances in Theoretical and Mathematical Physics. 7 (5): 831–864. arXiv:hep-th/0206161. doi:10.4310/ATMP.2003.v7.n5.a4. S2CID 2285041.

Read other articles:

This list is of the Intangible Cultural Properties of Japan in the Prefecture of Nara.[1] National Cultural Properties As of 1 November 2015, two Important Intangible Cultural Properties have been designated.[2][3][4] Performing Arts Property Holder Comments Image Ref. Noh - Kotsuzumi能楽・小鼓Nōgaku kotsuzumi Araki Kensaku (荒木建作) [1] Gidayū-bushi義太夫節Gidayū-bushi Tomizawa Hinafumi (豊澤雛文) [2] This list is complete and up to date a...

 

Keuskupan Agung Santiago de CompostelaArchidioecesis CompostellanaArquidiocese de Santiago de Compostela (Galisia)Archidiócesis de Santiago de Compostela (Spanyol)Katolik Katedral Santiago de CompostelaLokasiNegaraSpanyolProvinsi gerejawiSantiago de CompostelaStatistikLuas8.545 km2 (3.299 sq mi)Populasi- Total- Katolik(per 2010)1.301.1471,192,508 (91.7%)InformasiDenominasiKatolik RomaGereja sui iurisGereja LatinRitusRitus RomaPendirian5 Desember 1095 (sebag...

 

British musician (born 1948) This article is about the English musician. He is not to be confused with Brian Enos. Brian EnoRDIEno in 2015BornBrian Peter George Eno (1948-05-15) 15 May 1948 (age 75)Melton, Suffolk, EnglandOther namesEnoBrian Peter George St John le Baptiste de la Salle EnoOccupationsMusicianproducercomposersongwritervisual artistsound designeractivistYears active1970–presentChildren3Musical careerGenresAmbientart popart rockdroneelectronicexperimentalminimali...

EuthymidèsBiographieNaissance AthènesNom dans la langue maternelle ΕὐθυμίδηςÉpoque Antiquité classiqueActivités Peintre sur vases à figures rouges, potier grec de l'Antiquité, peintre de vases attiqueAutres informationsMouvement Groupe des pionniers (en)Genre artistique Céramique grecque antiquemodifier - modifier le code - modifier Wikidata Thésée emportant Hélène (v. 510 av. J.-C.). Euthymidès (en grec ancien : Ευθυμίδης) est un peintre sur vase de la Gr...

 

Екіпаж американського бомбардувальника Б-17 «Летюча фортеця» У Вікіпедії є статті про інші значення цього терміна: Екіпаж (значення). Екіпа́ж (фр. equipage — «оснащення корабля»; «суднова команда», від équiper — «споряджати», «забезпечувати», «екіпірувати») — група люде...

 

Diana Spencer, Duquesa de Bedford Información personalNombre de nacimiento Diana Spencer Nacimiento 31 de julio de 1710 Londres (Reino de Gran Bretaña) Fallecimiento 27 de septiembre de 1735 (25 años)Londres (Reino de Gran Bretaña) Causa de muerte Tuberculosis FamiliaFamilia Familia Spencer Padres Charles Spencer, 3rd Earl of Sunderland Anne Spencer, Countess of Sunderland Cónyuge John Russell, 4th Duke of Bedford (desde 1731) Información profesionalOcupación Aristócrata [ed...

Ken Kirzinger (2015) Ken Kirzinger (* 4. November 1959 in Saskatchewan; auch bekannt als Ken Kersinger, Ken Kerzinger, Ken Kirtzinger und Ken Kirzhinger) ist ein kanadischer Stuntman und Schauspieler. Zu seiner bislang bekanntesten Rolle als Schauspieler zählt die Verkörperung des Jason Voorhees in dem Film Freddy vs. Jason. Als Stuntman war er unter anderem für X-Men 2 und Walking Tall – Auf eigene Faust im Einsatz. Sonstiges Ken Kirzinger hatte bereits in Freitag der 13. Teil VIII – ...

 

Couroupita guianensis Bunga Couroupita guianensis Status konservasi Risiko Rendah (IUCN 2.3) Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Ericales Famili: Lecythidaceae Genus: Couroupita Spesies: C. guianensis Nama binomial Couroupita guianensisAubl. Couroupita guianensis Couroupita guianensis Aubl., suku Lecythidaceae) adalah tumbuhan berbentuk pohon berukuran besar (dapat mencapai 15 sampai 25m) yang bunganya beraroma khas. Tumbuhan yang be...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Ginger BanksGinger Banks, 2019Lahir30 Mei 1990 (umur 33)[1]Tinggi5 ft 8 in (1,73 m)[1]Berat120 pon (54 kg; 8,6 st)[1] Ginger Banks (lahir 30 Mei 1990) adalah seorang model, aktris porno dan pe...

العلاقات البليزية التوفالية بليز توفالو   بليز   توفالو تعديل مصدري - تعديل   العلاقات البليزية التوفالية هي العلاقات الثنائية التي تجمع بين بليز وتوفالو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة بليز توف...

 

Бермудські Острови розділені на 9 округів та 2 муніципалітети. № Адміністративніодиниці Площакм² Населення,2010, чол. Густота,чол./км² Округ 1 Сендіс 6,7 7 655 1142,54 2 Саутгемптон 5,8 6 633 1143,62 3 Ворік 5,7 8 615 1511,4 4 Пейджет 5,3 5 702 1075,85 5 Пембрук 4,7 10 610 2257,45 6 Девоншир 4,9 7 332 1496,33 7 Сміт 4,9 5 406 1103,27 ...

 

Abnaki-class tugboat USS Mosopelea History United States NameMosopelea NamesakeMosopelea BuilderCharleston Shipbuilding & Drydock Co. Laid down2 January 1945 Launched7 May 1945 Sponsored byMrs. David Leroy Key Commissioned28 July 1945 Decommissioned2 July 1973 Stricken21 February 1992 Identification Callsign: NZIX Hull number: ATF-158 Honours andawardsSee Awards FateSunk as target, 27 October 1999 General characteristics Class and typeAbnaki-class tugboat Displacement 1,589 t (1,564 ...

One of the seven sacraments of the Catholic Church This article is about one of the sacraments of the Catholic Church. For confession in other religions, see Confession (disambiguation) § Religion. For penance in other religions, see Penance. For reconciliation in other religions, see Reconciliation (theology). Part of a series onPenance and Reconciliationin the Catholic Church Sacrament of Penance and Reconciliation Contrition Seal of the Confessional Misericordia Dei Reconciliatio et ...

 

Encefalomielitis aguda diseminada La leucoencefalitis hemorrágica aguda fulminante muestra muchas lesiones. El paciente sobrevivió, pero permaneció en un estado vegetativo persistenteEspecialidad neurología[editar datos en Wikidata] La encefalomielitis diseminada aguda (ADEM por sus siglas en inglés, de Acute disseminated encephalomyelitis) o inflamación leucocítica y hemorrágica del sistema nervioso central es una rara enfermedad autoinmune caracterizada por una repentina y...

 

1936 film by George B. Seitz The Three Wise GuysDirected byGeorge B. SeitzScreenplay byElmer HarrisDamon RunyonProduced byHarry RapfStarringRobert YoungBetty FurnessRaymond WalburnThurston HallBruce CabotDonald MeekCinematographyJackson RoseEdited byFrank E. HullMusic byWilliam AxtProductioncompanyMetro-Goldwyn-MayerDistributed byMetro-Goldwyn-MayerRelease date May 15, 1936 (1936-05-15) Running time73 minutesCountryUnited StatesLanguageEnglish The Three Wise Guys is a 1936 Amer...

Peta infrastruktur dan tata guna lahan di Komune Bulgnéville.  = Kawasan perkotaan  = Lahan subur  = Padang rumput  = Lahan pertanaman campuran  = Hutan  = Vegetasi perdu  = Lahan basah  = Anak sungaiBulgnéville merupakan sebuah komune di departemen Vosges yang terletak pada sebelah timur laut Prancis. Lihat pula Komune di departemen Vosges Referensi INSEE lbsKomune di departemen Vosges Les Ableuvenettes Ahéville Aingeville Ainvelle Allarmont Ambacou...

 

Genus of flowering plants For other uses, see Freesia (disambiguation). Freesia Cultivated freesias Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Monocots Order: Asparagales Family: Iridaceae Subfamily: Crocoideae Tribe: Freesieae Genus: FreesiaEckl. ex Klatt Type species Freesia refracta(Jacquin) Klatt Synonyms[1] Anomatheca Ker Gawl. Nymanina Kuntze Freesia is a genus of herbaceous perennial flowering plants in the family Iridaceae, first ...

 

2003 film directed by Suraj MilitaryTitle cardDirected byG. SaisureshScreenplay byG. SaisureshStory bySiddiqueProduced byS. SiddiqStarringSathyarajRambhaCinematographyD. SankarEdited bySuresh RajanMusic byDevaProductioncompanyCine Times EntertainmentRelease date 28 February 2003 (2003-02-28) Running time142 minutesCountryIndiaLanguageTamil Military is a 2003 Indian Tamil-language action drama film directed by Suraj, credited as G. Saisuresh. The film stars Sathyaraj and Rambha....

Ford Taurus XInformasiProdusenFord Motor CompanyJuga disebutFord FreestyleMasa produksi2004–2009PerakitanChicago Assembly(Chicago, Illinois, United States)Bodi & rangkaKelasfull-size CrossoverBentuk kerangka5-door CrossoverTata letakMesin depan, penggerak roda depan / 4WDMobil terkaitFord Five Hundred/TaurusMercury Montego/SableKronologiPendahuluFord Taurus wagonPenerusFord Flex Ford Taurus X adalah crossover SUV full-size [1] yang diproduksi oleh Ford Motor Company di...

 

Pak Meng Beach at sundown Pak Meng Beach (Thai: หาดปากเมง, RTGS: Hat Pak Meng, pronounced [hàːt pàːk mēːŋ]) is a sand beach in Tambon Mai Fat, Amphoe Sikao, Trang Province, southern Thailand. It is known as Trang's most popular beach.[1] Pak Meng Beach is a crescent shaped beach with a length of about 7 km (4.3 mi) located about 38 km (24 mi) from Trang City, it can be considered as part of nearby Hat Chao Mai National Park. ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!