Secure two-party computation

Secure two-party computation (2PC) a.k.a. Secure function evaluation is sub-problem of secure multi-party computation (MPC) that has received special attention by researchers because of its close relation to many cryptographic tasks.[1][2] The goal of 2PC is to create a generic protocol that allows two parties to jointly compute an arbitrary function on their inputs without sharing the value of their inputs with the opposing party.[3] One of the most well known examples of 2PC is Yao's Millionaires' problem, in which two parties, Alice and Bob, are millionaires who wish to determine who is wealthier without revealing their wealth.[4] Formally, Alice has wealth , Bob has wealth , and they wish to compute without revealing the values or .

Yao's garbled circuit protocol for two-party computation only provided security against passive adversaries.[5] One of the first general solutions for achieving security against active adversary was introduced by Goldreich, Micali and Wigderson[6] by applying Zero-Knowledge Proof to enforce semi-honest behavior.[7] This approach was known to be impractical for years due to high complexity overheads. However, significant improvements have been made toward applying this method in 2PC and Abascal, Faghihi Sereshgi, Hazay, Yuval Ishai and Venkitasubramaniam gave the first efficient protocol based on this approach.[8] Another type of 2PC protocols that are secure against active adversaries were proposed by Yehuda Lindell and Benny Pinkas,[9] Ishai, Manoj Prabhakaran and Amit Sahai[10] and Jesper Buus Nielsen and Claudio Orlandi.[11] Another solution for this problem, that explicitly works with committed input was proposed by Stanisław Jarecki and Vitaly Shmatikov.[12]

Secure multi-party computation

Security

The security of a two-party computation protocol is usually defined through a comparison with an idealised scenario that is secure by definition.[13] The idealised scenario involves a trusted party that collects the input of the two parties mostly client and server over secure channels and returns the result if none of the parties chooses to abort.[14] The cryptographic two-party computation protocol is secure, if it behaves no worse than this ideal protocol, but without the additional trust assumptions. This is usually modeled using a simulator. The task of the simulator is to act as a wrapper around the idealised protocol to make it appear like the cryptographic protocol. The simulation succeeds with respect to an information theoretic, respectively computationally bounded adversary if the output of the simulator is statistically close to, respectively computationally indistinguishable from the output of the cryptographic protocol. A two-party computation protocol is secure if for all adversaries there exists a successful simulator.

See also

References

  1. ^ Wang, Xiao; Malozemoff, Alex J.; Katz, Jonathan (2017), Coron, Jean-Sébastien; Nielsen, Jesper Buus (eds.), "Faster Secure Two-Party Computation in the Single-Execution Setting", Advances in Cryptology – EUROCRYPT 2017, Lecture Notes in Computer Science, vol. 10212, Cham: Springer International Publishing, pp. 399–424, doi:10.1007/978-3-319-56617-7_14, ISBN 978-3-319-56616-0, retrieved 2022-10-19
  2. ^ "MPC Wallet - What is MPC?". ZenGo. Retrieved 2022-10-19.
  3. ^ Henecka, Wilko; K ögl, Stefan; Sadeghi, Ahmad-Reza; Schneider, Thomas; Wehrenberg, Immo (2010). "TASTY". Proceedings of the 17th ACM conference on Computer and communications security (PDF). Chicago, Illinois, US: ACM Press. pp. 451–462. doi:10.1145/1866307.1866358. ISBN 978-1-4503-0245-6. S2CID 7276194.
  4. ^ Lin, Hsiao-Ying; Tzeng, Wen-Guey (2005), Ioannidis, John; Keromytis, Angelos; Yung, Moti (eds.), "An Efficient Solution to the Millionaires' Problem Based on Homomorphic Encryption", Applied Cryptography and Network Security, vol. 3531, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 456–466, doi:10.1007/11496137_31, ISBN 978-3-540-26223-7
  5. ^ Yao, A. C. (1982). "Protocols for secure computations". 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). pp. 160–164. doi:10.1109/SFCS.1982.38. S2CID 206558698.
  6. ^ Goldreich, O.; Micali, S.; Wigderson, A. (1987-01-01). "How to play ANY mental game". Proceedings of the nineteenth annual ACM conference on Theory of computing - STOC '87. New York, New York, US: Association for Computing Machinery. pp. 218–229. doi:10.1145/28395.28420. ISBN 978-0-89791-221-1. S2CID 6669082.
  7. ^ Goldwasser, S; Micali, S; Rackoff, C (1985-12-01). "The knowledge complexity of interactive proof-systems". Proceedings of the seventeenth annual ACM symposium on Theory of computing - STOC '85. Providence, Rhode Island, US: Association for Computing Machinery. pp. 291–304. doi:10.1145/22145.22178. ISBN 978-0-89791-151-1. S2CID 8689051.
  8. ^ Abascal, Jackson; Faghihi Sereshgi, Mohammad Hossein; Hazay, Carmit; Ishai, Yuval; Venkitasubramaniam, Muthuramakrishnan (2020-10-30). "Is the Classical GMW Paradigm Practical? The Case of Non-Interactive Actively Secure 2PC". Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. CCS '20. Virtual Event, US: Association for Computing Machinery. pp. 1591–1605. doi:10.1145/3372297.3423366. ISBN 978-1-4503-7089-9. S2CID 226228208.
  9. ^ Lindell, Y.; Pinkas, B. (2007). "An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries". Advances in Cryptology - EUROCRYPT 2007. Lecture Notes in Computer Science. Vol. 4515. pp. 52–78. doi:10.1007/978-3-540-72540-4_4. ISBN 978-3-540-72539-8.
  10. ^ Ishai, Y.; Prabhakaran, M.; Sahai, A. (2008). "Founding Cryptography on Oblivious Transfer – Efficiently". Advances in Cryptology – CRYPTO 2008. Lecture Notes in Computer Science. Vol. 5157. pp. 572–591. doi:10.1007/978-3-540-85174-5_32. ISBN 978-3-540-85173-8.
  11. ^ Nielsen, J. B.; Orlandi, C. (2009). "LEGO for Two-Party Secure Computation". Theory of Cryptography. Lecture Notes in Computer Science. Vol. 5444. pp. 368–386. CiteSeerX 10.1.1.215.4422. doi:10.1007/978-3-642-00457-5_22. ISBN 978-3-642-00456-8.
  12. ^ Jarecki, S.; Shmatikov, V. (2007). "Efficient Two-Party Secure Computation on Committed Inputs". Advances in Cryptology - EUROCRYPT 2007. Lecture Notes in Computer Science. Vol. 4515. pp. 97–114. doi:10.1007/978-3-540-72540-4_6. ISBN 978-3-540-72539-8.
  13. ^ Lindell, Yehuda; Pinkas, Benny (2015). "An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries". Journal of Cryptology. 28 (2): 312–350. doi:10.1007/s00145-014-9177-x. ISSN 0933-2790. S2CID 253638839.
  14. ^ Crépeau, Claude; Wullschleger, Jürg (2008), Safavi-Naini, Reihaneh (ed.), "Statistical Security Conditions for Two-Party Secure Function Evaluation", Information Theoretic Security, Lecture Notes in Computer Science, vol. 5155, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 86–99, doi:10.1007/978-3-540-85093-9_9, ISBN 978-3-540-85092-2, retrieved 2022-10-19


Read other articles:

Not to be confused with Jump into the Fire. 1984 single by MetallicaJump in the FireSingle by Metallicafrom the album Kill 'Em All B-sidePhantom Lord (Live)Seek & Destroy (Live)ReleasedJanuary 20, 1984[1]RecordedMay 10–27, 1983 at Music America Studios, Rochester, New YorkGenreThrash metalLength4:40LabelMegaforceComposer(s)Dave MustaineJames HetfieldLars UlrichLyricist(s)James HetfieldProducer(s)Paul CurcioJohny ZazulaMetallica singles chronology Whiplash (1983) Jump in the Fire...

 

Sporting event delegationZimbabwe at the2024 Summer OlympicsIOC codeZIMNOCZimbabwe Olympic Committeein Paris, France26 July 2024 (2024-07-26) – 11 August 2024 (2024-08-11)Competitors2 in 2 sportsMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Olympics appearances (overview)19281932–1956196019641968–1976198019841988199219962000200420082012201620202024 Zimbabwe is scheduled to compete at the 2024 Summer Olympics in Paris from 26 July to 11 August 2024. It...

 

Gerhana Matahari 26 Januari, 2009. Gerhana Matahari 26 Januari 2009 adalah gerhana Matahari cincin (GMC) dengan magnitudo 0,9282[1] yang terlihat sepanjang koridor yang melewati Samudera India bagian selatan, ujung selatan Pulau Sumatra (Lampung), Selat Sunda, Pulau Bangka bagian selatan, Pulau Belitung, dan Kalimantan. Salah satu daerah di Indonesia yang memiliki waktu puncak GMC paling lama adalah Pringsewu, Lampung, dengan lama fase cincin 6 menit 12 detik (gerhana dimulai pukul 13...

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (يناير 2022) هذه المق

 

Wilhelm von Reiser, der vierte Bischof von Rottenburg Wilhelm Reiser, ab 1881 von Reiser (* 13. Mai 1835 in Egesheim; † 11. Mai 1898 in Ellwangen), war ein katholischer Theologe, Priester und Bischof von Rottenburg. Inhaltsverzeichnis 1 Leben und Werk 2 Ehrungen 3 Einzelnachweise 4 Literatur 5 Weblinks Leben und Werk Bischofswappen aus der Zeit als Weihbischof Wilhelm Reiser wurde als Sohn des Schultheißen und Webers Leonhard Reiser in Egesheim in Württemberg geboren. Nach dem Studium der...

 

Fernsehserie Titel Mit Rose und Revolver Originaltitel Les Brigades du Tigre Produktionsland Frankreich Originalsprache Französisch Genre Krimi Erscheinungsjahre 1974–1983 Länge 55 Minuten Episoden 36 in 6 Staffeln Idee Claude Desailly Produktion Roland Gritti, Étienne Laroche, Serge Lebeau, Robert Velin für ORTF/TELECLIP (Frankreich), Bayerischer Rundfunk/TV60Filmproduktion (Bundesrepublik Deutschland), RTB (Belgien) und Télévision Suisse Romande Musik Claude Bolling Erstausstra...

Shmuel DayanLahir(1891-08-08)8 Agustus 1891Tempat lahirZhashkiv, Kekaisaran RusiaTahun aliyah1908Meninggal dunia11 Agustus 1968(1968-08-11) (umur 77)Knesset1, 2, 3Faksi yang diwakili di Knesset1949–1959Mapai Shmuel Dayan (Ibrani: שמואל דיין; 8 Agustus 1891 – 11 Agustus 1968) adalah seorang aktivis Zionis pada masa Palestina Mandat Inggris dan politikus Israel. Ia menjabat dalam tiga Knesset pertama. Pranala luar Shmuel Dayan di situs web Knesset Pengawasan otor...

 

Equipment used to transfer heat between fluids Tubular heat exchanger Partial view into inlet plenum of shell and tube heat exchanger of a refrigerant based chiller for providing air-conditioning to a building A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes.[1] The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact.[2] They are widely ...

 

Reggenza Italiana del Carnaro Regência Italiana de Carnaro Estado não reconhecido internacionalmente buscando integração com o Reino da Itália ← 1919 – 1920 → Bandeira Localização de CarnaroMapa da Regência Italiana de Carnaro Continente Europa Capital Fiume Língua oficial Italiano Governo suis generis Comandante Gabriele d'Annunzio História  • 12 de setembro de 1919 Fundação  • 30 de dezembro de 1920 Dissolução A Regência Italiana d...

Bulgarians in Ukraineболгари bolharyTotal population204,574 (2001)Regions with significant populationsOdesa Oblast150,683 (2001)Zaporizhzhia Oblast27,764 (2001)Mykolaiv Oblast5,614 (2001)Donetsk Oblast4,833 (2001)other regions of Ukraine15,680 (2001)LanguagesBulgarian (94%), Russian (60%), Ukrainian (55%)Religion Of the total Of the religious Related ethnic groupsBessarabian BulgariansPart of a series onBulgariansБългари Culture Literature Music Art Cinema Names Cuisine Dances C...

 

Vienna U-Bahn station OberlaaGeneral informationLocationFavoriten, ViennaAustriaCoordinates48°08′32″N 16°24′00″E / 48.1423°N 16.4000°E / 48.1423; 16.4000Line(s) P+RHistoryOpened2 September 2017Services Preceding station Wiener Linien Following station Terminus U1 Neulaatoward Leopoldau Oberlaa is a station on Line U1 of the Vienna U-Bahn. Since September 2, 2017, it has been the new southern terminus of the U1, which had its terminus at Reumannplatz since 1...

 

Low-security United States prison in Ohio Federal Correctional Institution, ElktonLocationElkrun Township, Columbiana County, OhioStatusOperationalSecurity classLow-security (with minimum-security prison camp)Population1,398 (298 in prison camp)Managed byFederal Bureau of Prisons The Federal Correctional Institution, Elkton (FCI Elkton) is a low-security United States federal prison for male inmates near Elkton, Ohio. It is operated by the Federal Bureau of Prisons, a division of the United S...

Suguru Deto Neto bermain untuk Valencia pada 2019Informasi pribadiNama lengkap Norberto Murara Neto[1]Tanggal lahir 19 Juli 1989 (umur 34)Tempat lahir Araxá, BrasilTinggi 191 cm (6 ft 3 in)[2]Posisi bermain Penjaga gawangInformasi klubKlub saat ini AFC BournemouthNomor 13Karier junior2007–2009 Atlético ParanaenseKarier senior*Tahun Tim Tampil (Gol)2009–2011 Atlético Paranaense 36 (0)2011–2015 Fiorentina 72 (0)2015-2017 Juventus 11 (0)2017-2019 Vale...

 

This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (July 2009) (Learn how and when to remove this template message) Study abroad center school in ItalyIntercollegiate Center for Classical Studies in RomeLocationRomeItalyInformationTypeStudy abroad centerMottoIn centro crescit scientiaEstablished1965Faculty6Enrollment35Campus typeurbanWebsitethecentrorom...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hayley Westenra album – news · newspapers · books · scholar · JSTOR (July 2011) (Learn how and when to remove this template message) 2001 studio album by Hayley WestenraHayley WestenraStudio album by Hayley WestenraReleased26 April 2001GenreCrossov...

British-Japanese skateboarder Sky Brownスカイ・ブラウンBrown at the 2020 Lausanne Youth Olympic VillagePersonal informationBorn (2008-07-07) 7 July 2008 (age 15)Miyazaki, JapanYears active2016–presentJapanese nameKanjiブラウン 澄海Kanaブラウン スカイ SportCountryGreat BritainSportSkateboardingPositionGoofy footedRank2nd (June 2021)[1]EventPark Medal record Women's park skateboarding Representing  Great Britain Olympic Games 2020 Tokyo Park World C...

 

Taman Nasional KanhaIUCN Kategori II (Taman Nasional)Harimau di KanhaLetakMadhya Pradesh, IndiaKota terdekatMandlaLuas940 km2 (360 sq mi)Dibentuk1933Pengunjung1.000 (tahun 1989)Pihak pengelolaMadhya Pradesh Forest Department Taman Nasional Kanha, juga dikenal sebagai Cagar Alam Harimau Kanha, adalah salah satu cagar alam harimau di India dan taman nasional terbesar di Madhya Pradesh, negara bagian di jantung India. Area Kanha saat ini dibagi menjadi dua cagar alam, Hallon dan B...

 

City in Illinois, United StatesYorkville, Illinois The VilleCityThe Kendall County Courthouse is listed on the U.S. National Register of Historic Places.Nickname(s): The Ville, Y-TownMotto: The City with a River in Its Heart” [1]Location of Yorkville in Kendall County, IllinoisLocation of Illinois in the United StatesCoordinates: 41°36′59″N 88°25′14″W / 41.61639°N 88.42056°W / 41.61639; -88.42056[2]CountryUnited StatesStateIllino...

American politician Curtis Hidden Page. Curtis Hidden Page (April 4, 1870[1]-December 13, 1946[2]) was a United States educator and writer. Biography He was born in Greenwood, Missouri. He graduated from Harvard University, where in 1890 he became the first recipient of the George B. Sohier Prize for literature. He held teaching positions in French and English at Harvard University (1893–1908), Columbia University (1908–1909), Northwestern University (professor of English ...

 

Defunct lesbian bar in Portland, Oregon, U.S. The Egyptian ClubEgyptian Room, E-RoomLogo on venue signageThe Egyptian ClubLocation in Portland, OregonAddress3701 Southeast Division StreetLocationPortland, Oregon, United StatesCoordinates45°30′18″N 122°37′32″W / 45.50489°N 122.62560°W / 45.50489; -122.62560OwnerKim DavisTypeGay barOpened1995 (1995)Closed2010 (Egyptian Room)2011 (Weird Bar) The Egyptian Club, also known as Egyptian Room and referred to c...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!