Schamel equation

The Schamel equation (S-equation) is a nonlinear partial differential equation of first order in time and third order in space. Similar to a Korteweg–De Vries equation (KdV),[1] it describes the development of a localized, coherent wave structure that propagates in a nonlinear dispersive medium. It was first derived in 1973 by Hans Schamel [2] to describe the effects of electron trapping in the trough of the potential of a solitary electrostatic wave structure travelling with ion acoustic speed in a two-component plasma. It now applies to various localized pulse dynamics such as:

  • electron and ion holes or phase space vortices in collision-free plasmas such as space plasmas,[3]
  • axisymmetric pulse propagation in physically stiffened nonlinear cylindrical shells,[4]
  • "Soliton" propagation in nonlinear transmission lines [5] or in fiber optics and laser physics.[6]

The equation

The Schamel equation is [2]

where stands for . In the case of ion-acoustic solitary waves, the parameter reflects the effect of electrons trapped in the trough of the electrostatic potential . It is given by , where , the trapping parameter, reflects the status of the trapped electrons, representing a flat-topped stationary trapped electron distribution, a dip or depression. It holds , where is the wave amplitude. All quantities are normalized: the potential energy by electron thermal energy, the velocity by ion sound speed, time by inverse ion plasma frequency and space by electron Debye length. Note that for a KdV equation is replaced by such that the nonlinearity becomes bilinear (see later).

Solitary wave solution

The steady state solitary wave solution, , is given in the comoving frame by:

The speed of the structure is supersonic, , since has to be positive, , which corresponds in the ion acoustic case to a depressed trapped electron distribution .[2][7]

Proof by pseudo-potential method

The proof of this solution uses the analogy to classical mechanics via
with , being the corresponding pseudo-potential. From this we get by an integration: , which represents the pseudo-energy, and from the Schamel equation: . Through the obvious demand, namely that at potential maximum, , the slope of vanishes we get: . This is a nonlinear dispersion relation (NDR) because it determines the phase velocity given by the second expression. The canonical form of is obtained by replacing with the NDR. It becomes:

The use of this expression in , which follows from the pseudo-energy law, yields by integration:

This is the inverse function of as given in the first equation. Note that the integral in the denominator of exists and can be expressed by known mathematical functions. Hence is a mathematically disclosed function. However, the structure often remains mathematically undisclosed, i.e. it cannot be expressed by known functions (see for instance Sect. Logarithmic Schamel equation). This generally happens if more than one trapping scenarios are involved, as e.g. in driven intermittent plasma turbulence.[8]

Non-integrability

In contrast to the KdV equation, the Schamel equation is an example of a non-integrable evolution equation. It only has a finite number of (polynomial) constants of motion [9] and does not pass a Painlevé test.[4][10] Since a so-called Lax pair (L,P) does not exist,[11] it is not integrable by the inverse scattering transform.[12]

Generalizations

Schamel–Korteweg–de Vries equation

Taking into account the next order in the expression for the expanded electron density, we get , from which we obtain the pseudo-potential -. The corresponding evolution equation then becomes:

which is the Schamel–Korteweg–de Vries equation.

Its solitary wave solution reads [7]

with and . Depending on Q it has two limiting solitary wave solutions: For we find , the Schamel solitary wave.

For we get which represents the ordinary ion acoustic soliton. The latter is fluid-like and is achieved for or representing an isothermal electron equation of state. Note that the absence of a trapping effect (b = 0) does not imply the absence of trapping, a statement that is usually misrepresented in the literature, especially in textbooks. As long as is nonzero, there is always a nonzero trapping width in velocity space for the electron distribution function.

Logarithmic Schamel equation

Another generalization of the S-equation is obtained in the case of ion acoustic waves by admitting a second trapping channel. By considering an additional, non-perturbative trapping scenario, Schamel [8] received:

,

a generalization called logarithmic S-equation. In the absence of the square root nonlinearity, , it is solved by a Gaussian shaped hole solution: with and has a supersonic phase velocity
. The corresponding pseudo-potential is given by . From this follows which is the inverse function of the Gaussian mentioned. For a non-zero b, keeping , the integral to get can no longer be solved analytically, i.e. by known mathematical functions. A solitary wave structure still exists, but cannot be reached in a disclosed form.

Schamel equation with random coefficients

The fact that electrostatic trapping involves stochastic processes at resonance caused by chaotic particle trajectories has led to considering b in the S-equation as a stochastic quantity. This results in a Wick-type stochastic S-equation.[13][14]

Time-fractional Schamel equation

A further generalization is obtained by replacing the first time derivative by a Riesz fractional derivative yielding a time-fractional S-equation.[15][16] It has applications e.g. for the broadband electrostatic noise observed by the Viking satellite.[16]

Schamel–Schrödinger equation

A connection between the Schamel equation and the nonlinear Schrödinger equation can be made within the context of a Madelung fluid.[17] It results in the Schamel–Schrödinger equation.[6]

and has applications in fiber optics [18] and laser physics.[19]

References

  1. ^ Korteweg, D. J.; de Vries, G. (1895). "On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 39 (240). Informa UK Limited: 422–443. doi:10.1080/14786449508620739. ISSN 1941-5982.
  2. ^ a b c Schamel, Hans (1973). "A modified Korteweg-de Vries equation for ion acoustic wavess due to resonant electrons". Journal of Plasma Physics. 9 (3). Cambridge University Press (CUP): 377–387. Bibcode:1973JPlPh...9..377S. doi:10.1017/s002237780000756x. ISSN 0022-3778. S2CID 124961361.
  3. ^ Schamel, Hans (1986). "Electron holes, ion holes and double layers". Physics Reports. 140 (3). Elsevier BV: 161–191. doi:10.1016/0370-1573(86)90043-8. ISSN 0370-1573.
  4. ^ a b Zemlyanukhin, A. I.; Andrianov, I. V.; Bochkarev, A. V.; Mogilevich, L. I. (2019-08-17). "The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells". Nonlinear Dynamics. 98 (1). Springer Science and Business Media LLC: 185–194. doi:10.1007/s11071-019-05181-5. ISSN 0924-090X. S2CID 202126052.
  5. ^ Aziz, Farah; Asif, Ali; Bint-e-Munir, Fatima (2020). "Analytical modeling of electrical solitons in a nonlinear transmission line using Schamel–Korteweg deVries equation". Chaos, Solitons & Fractals. 134. Elsevier BV: 109737. Bibcode:2020CSF...13409737A. doi:10.1016/j.chaos.2020.109737. ISSN 0960-0779. S2CID 216209164.
  6. ^ a b S. Phibanchon and M. A. Allen, International Scholarly and Scientific Research & Innovation 6(2012)18
  7. ^ a b Schamel, H. (1972). "Stationary solitary, snoidal and sinusoidal ion acoustic waves". Plasma Physics. 14 (10): 905. Bibcode:1972PlPh...14..905S. doi:10.1088/0032-1028/14/10/002.
  8. ^ a b Schamel, Hans (2020-09-30). "Two-Parametric, Mathematically Undisclosed Solitary Electron Holes and Their Evolution Equation". Plasma. 3 (4). MDPI AG: 166–179. doi:10.3390/plasma3040012. ISSN 2571-6182.
  9. ^ Verheest, Frank; Hereman, Willy (1994-12-01). "Conservations laws and solitary wave solutions for generalized Schamel equations". Physica Scripta. 50 (6). IOP Publishing: 611–614. Bibcode:1994PhyS...50..611V. doi:10.1088/0031-8949/50/6/002. ISSN 0031-8949. S2CID 250799267.
  10. ^ R. Conte and M. Musette: The Painlevé Handbook, Springer, New-York (2008)
  11. ^ Lax, Peter D. (1968). "Integrals of nonlinear equations of evolution and solitary waves". Communications on Pure and Applied Mathematics. 21 (5). Wiley: 467–490. doi:10.1002/cpa.3160210503. ISSN 0010-3640.
  12. ^ Gardner, Clifford S.; Greene, John M.; Kruskal, Martin D.; Miura, Robert M. (1967-11-06). "Method for Solving the Korteweg-deVries Equation". Physical Review Letters. 19 (19). American Physical Society (APS): 1095–1097. Bibcode:1967PhRvL..19.1095G. doi:10.1103/physrevlett.19.1095. ISSN 0031-9007.
  13. ^ Abdel-Aty, A.-H.; Khater, M. M. A.; Zidan, A. M.; Attia, R.A. M. (2020). "New Analytical Solutions of Wick-Type Stochastic Schamel KdV Equation Via Modified Khater Method". Journal of Information Science and Engineering. 36 (6): 1279.
  14. ^ Wang, Xueqin; Shang, Yadong; Di, Huahui (2017). "Exact Solutions for the Wick-Type Stochastic Schamel-Korteweg-de Vries Equation". Advances in Mathematical Physics. 2017. Hindawi Limited: 1–9. doi:10.1155/2017/4647838. ISSN 1687-9120.
  15. ^ El-Wakil, S. A.; Abulwafa, Essam M.; El-Shewy, E. K.; Mahmoud, Abeer A. (2011). "Time-fractional KdV equation for plasma of two different temperature electrons and stationary ion". Physics of Plasmas. 18 (9). AIP Publishing: 092116. Bibcode:2011PhPl...18i2116E. doi:10.1063/1.3640533. ISSN 1070-664X.
  16. ^ a b Guo, Shimin; Mei, Liquan; He, Yaling; Li, Yibao (2016). "Time-fractional Schamel–KdV equation for dust-ion-acoustic waves in pair-ion plasma with trapped electrons and opposite polarity dust grains". Physics Letters A. 380 (9–10). Elsevier BV: 1031–1036. Bibcode:2016PhLA..380.1031G. doi:10.1016/j.physleta.2016.01.002. ISSN 0375-9601.
  17. ^ R. Fedele, H. Schamel and P. K. Shukla, Phys. Scripta vol. T98(2002)18
  18. ^ G. P. Agrawal, Nonlinear Fiber Optics, New York: Academic Press, 2001
  19. ^ Bullough, R K; Jack, P M; Kitchenside, P W; Saunders, R (1979). "Solitons in Laser Physics". Physica Scripta. 20 (3–4). IOP Publishing: 364–381. Bibcode:1979PhyS...20..364B. doi:10.1088/0031-8949/20/3-4/011. ISSN 0031-8949. S2CID 250868125.

Read other articles:

قرية زارى الحجل  - قرية -  تقسيم إداري البلد  اليمن المحافظة محافظة حجة المديرية مديرية أسلم العزلة عزلة أسلم الوسط السكان التعداد السكاني 2004 السكان 263   • الذكور 134   • الإناث 129   • عدد الأسر 33   • عدد المساكن 33 معلومات أخرى التوقيت توقيت اليمن (+3 غريني...

 

Untuk kegunaan lain, lihat Lampung (disambiguasi). Kabupaten Lampung SelatanKabupatenTranskripsi bahasa daerah • Aksara LampungKiri ke kanan: Masjid Agung Kalianda, Pelabuhan Bakauheni LambangJulukan: Sydney van Andalas[1]Motto: Khagom mufakat(Lampung) Bermusyawarah untuk mencapai mufakatPetaKabupaten Lampung SelatanPetaTampilkan peta SumatraKabupaten Lampung SelatanKabupaten Lampung Selatan (Indonesia)Tampilkan peta IndonesiaKoordinat: 5°33′45″S 105°32

 

La Paz Localidad y municipio BanderaEscudo La PazLocalización de La Paz en Provincia de Entre RíosCoordenadas 30°44′26″S 59°38′40″O / -30.740555555556, -59.644444444444Entidad Localidad y municipio • País  Argentina • Provincia  Entre Ríos • Departamento La PazPresidente municipal Bruno Sarubi, (UCR)Eventos históricos   • Fundación 13 de julio de 1835Superficie   • Total 119 km² Altitud   ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Murciélagos F.C. – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this template message) Football clubMurciélagosFull nameMurciélagos Fútbol ClubNickname(s)Los Murciélagos (The Bats)Los Caballeros de la Noche (The Dar...

 

Michael von der Heide in Oslo (2010) Michael von der Heide (* 16. Oktober 1971 in Amden) ist ein Schweizer Sänger. Inhaltsverzeichnis 1 Leben 2 Diskografie 2.1 Alben 2.2 Singles 2.3 Theater 2.4 Film 2.5 Auszeichnungen 3 Weblinks 4 Einzelnachweise Leben Von der Heide wurde als Sohn eines Deutschen und einer Schweizerin geboren. Mit 16 Jahren ging er als Au pair in die Romandie, nahm dort Gesangsstunden bei der Opernsängerin Ginette Girardier und entdeckte sein Talent für Chansons. Nach sein...

 

سفارة إستونيا في الولايات المتحدة إستونيا الولايات المتحدة الإحداثيات 38°54′43″N 77°02′55″W / 38.911832°N 77.04861°W / 38.911832; -77.04861 البلد الولايات المتحدة  المكان شمال غربي واشنطن العاصمة العنوان Massachusetts Avenue (Washington, D.C.) [الإنجليزية]‏ الموقع الالكتروني الموقع الرسمي...

Cet article est une ébauche concernant le Concours Eurovision de la chanson. Vous pouvez partager vos connaissances en l’améliorant (comment ?) ; pour plus d’indications, visitez le projet Eurovision. Bjørn Tidmand Bjørn Tidmand en 1963Informations générales Naissance 24 janvier 1940 (83 ans)Copenhague, Danemark Activité principale Chanteur Genre musical Pop Site officiel bjorntidmand.dk// modifier Bjørn Tidmand est un chanteur né à Copenhague au Danemark. Il tent...

 

هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في النص الحالي. (أكتوبر 2018) كلية الحقوق بجامعة فوردهام معلومات التأسيس 1905  الموقع الجغرافي إحداثيات 40°46

 

Була Buhla —  громада  — Вид Була Герб Координати: 51°26′24″ пн. ш. 10°29′24″ сх. д. / 51.44000° пн. ш. 10.49000° сх. д. / 51.44000; 10.49000 Країна  Німеччина Земля Тюрингія Район Айхсфельд Об'єднання громад Айхсфельд-Віпперауе Площа  - Повна 8...

David Hay Informações pessoais Nome completo David Hay Data de nasc. 29 de janeiro de 1948 Local de nasc. Paisley, Reino Unido Nacionalidade escocês Informações profissionais Posição Meio-Campo (aposentado) Função Jogador e Treinador Clubes profissionais Anos Clubes Jogos (golos) 1968–1974 1974–1980 Celtic Chelsea 0130 000(6)00120 000(3) Seleção nacional 1970–1974  Escócia 0027 000(0) Times/clubes que treinou 1981–19821983–198719891991–19922003–20042004–200520...

 

Season of television series DaredevilSeason 2Promotional posterStarring Charlie Cox Deborah Ann Woll Elden Henson Jon Bernthal Élodie Yung Stephen Rider Rosario Dawson Vincent D'Onofrio Country of originUnited StatesNo. of episodes13ReleaseOriginal networkNetflixOriginal releaseMarch 18, 2016 (2016-03-18)Season chronology← PreviousSeason 1Next →Season 3List of episodes The second season of the American streaming television series Daredevil, which is based on the ...

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Untuk kegunaan lain, lihat Red Book. RedbookPemimpin RedaksiMeredith Kahn RollinsKategoriGaya hidup, minat wanitaFrekuensi12 terbitan/tahunDidirikan1903; 120 tahun lalu (1903) (sebagai Ilustrasi Redbook)Terbitan terakhirJanuari 2019 (cetak)PerusahaanMajalah HearstNegaraAmerika SerikatBahasaBahasa InggrisSitus webS...

هذا التصنيف مخصص لجمع مقالات البذور المتعلقة بصفحة موضوع عن منتخب وطني بوتسواني. بإمكانك المساعدة في توسيع هذه المقالات وتطويرها. لإضافة مقالة إلى هذا التصنيف، استخدم {{بذرة منتخب وطني بوتسواني}} بدلاً من {{بذرة}}. هذا التصنيف لا يظهر في صفحات أعضائه؛ حيث إنه مخصص لصيانة صفحا...

 

Bahasa PyuHuruf-huruf pada Aksara PyuWilayahNegara kota Pyu, Kerajaan PaganKepunahanabad ke-13Rumpun bahasaSino-Tibet Asakia (?)Pyu Sistem penulisanAksara PyuKode bahasaISO 639-3pyxLINGUIST ListpyxGlottologburm1262[1] Status konservasi Punah EXSingkatan dari Extinct (Punah)Terancam CRSingkatan dari Critically endangered (Terancam Kritis) SESingkatan dari Severely endangered (Terancam berat) DESingkatan dari Devinitely endangered (Terancam) VUSingkatan dari Vulnerable (Rentan) Aman NES...

 

Form of gridiron football This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Eight-man football – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this template message) Eight-man football Gun Formation Eight-man football is a form of gridiron football, generally played by...

Headwind redirects here. For other uses, see Headwind (disambiguation). Tailwind redirects here. For other uses, see Tailwind (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Headwind and tailwind – news · newspapers · books · scholar · JSTOR (February 2018) (Learn how and when to remove thi...

 

Seiken Gakuin no MakentsukaiSampul novel ringan volume pertama聖剣学院の魔剣使い(Seiken Gakuin no Makentsukai) Novel ringanPengarangYū ShimizuIlustratorAsagi TōsakaPenerbitMedia FactoryPenerbit bahasa InggrisNA Yen PressImprintMF Bunko JDemografiLaki-lakiTerbit25 Mei 2019 – sekarangVolume13 MangaPengarangYū ShimizuIlustratorAsuka KeigenPenerbitKadokawa ShotenMajalahMonthly Shōnen AceDemografiShōnenTerbit26 November 2019 – sekarangVolume2 Seri animeSutradaraHiroyuki MoritaPro...

 

Category 1 Atlantic hurricane in 1969 Hurricane Martha Hurricane Martha just north of Panama on November 21Meteorological historyFormedNovember 21, 1969DissipatedNovember 25, 1969Category 1 hurricane1-minute sustained (SSHWS/NWS)Highest winds90 mph (150 km/h)Lowest pressure979 mbar (hPa); 28.91 inHgOverall effectsFatalities5 directDamage$30 million (1969 USD)Areas affectedPanama, Costa RicaIBTrACSPart of the 1969 Atlantic hurricane season Hurricane Martha was the...

British Army officer (1751–1804) For other people named George Napier, see George Napier (disambiguation). Colonel The HonourableGeorge NapierBorn(1751-03-11)11 March 1751Died12 October 1804(1804-10-12) (aged 53)AllegianceKingdom of Great BritainService/branchBritish ArmyYears of service1767–1804RankColonelBattles/warsAmerican War of IndependenceSpouse(s) Elizabeth Pollock ​ ​(m. 1775; died 1778)​ Lady Sarah Lennox ​(...

 

تفتقر سيرة هذه الشخصية الحيّة إلى الاستشهاد بمصدر موثوق به يمكن التحقق منه. فضلاً، ساهم في تطويرها من خلال إضافة مصادر موثوقة. في سير الأحياء، يُزال المحتوى فوراً إذا كان من غير مصدر يدعمه أو إذا كان المصدر المُستشهد به مشكوكاً بأمره. (مارس 2016) موشيه صفدي (بالإنجليزية: Moshe Safdi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!