Radiative transfer

Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the radiative transfer equation (RTE) exist for simple cases but for more realistic media, with complex multiple scattering effects, numerical methods are required. The present article is largely focused on the condition of radiative equilibrium.[1][2]

Definitions

The fundamental quantity that describes a field of radiation is called spectral radiance in radiometric terms (in other fields it is often called specific intensity). For a very small area element in the radiation field, there can be electromagnetic radiation passing in both senses in every spatial direction through it. In radiometric terms, the passage can be completely characterized by the amount of energy radiated in each of the two senses in each spatial direction, per unit time, per unit area of surface of sourcing passage, per unit solid angle of reception at a distance, per unit wavelength interval being considered (polarization will be ignored for the moment).

In terms of the spectral radiance, , the energy flowing across an area element of area located at in time in the solid angle about the direction in the frequency interval to is

where is the angle that the unit direction vector makes with a normal to the area element. The units of the spectral radiance are seen to be energy/time/area/solid angle/frequency. In MKS units this would be W·m−2·sr−1·Hz−1 (watts per square-metre-steradian-hertz).

The equation of radiative transfer

The equation of radiative transfer simply says that as a beam of radiation travels, it loses energy to absorption, gains energy by emission processes, and redistributes energy by scattering. The differential form of the equation for radiative transfer is:

where is the speed of light, is the emission coefficient, is the scattering opacity, is the absorption opacity, is the mass density and the term represents radiation scattered from other directions onto a surface.

Solutions to the equation of radiative transfer

Solutions to the equation of radiative transfer form an enormous body of work. The differences however, are essentially due to the various forms for the emission and absorption coefficients. If scattering is ignored, then a general steady state solution in terms of the emission and absorption coefficients may be written:

where is the optical depth of the medium between positions and :

Local thermodynamic equilibrium

A particularly useful simplification of the equation of radiative transfer occurs under the conditions of local thermodynamic equilibrium (LTE). It is important to note that local equilibrium may apply only to a certain subset of particles in the system. For example, LTE is usually applied only to massive particles. In a radiating gas, the photons being emitted and absorbed by the gas do not need to be in a thermodynamic equilibrium with each other or with the massive particles of the gas in order for LTE to exist.

In this situation, the absorbing/emitting medium consists of massive particles which are locally in equilibrium with each other, and therefore have a definable temperature (Zeroth Law of Thermodynamics). The radiation field is not, however in equilibrium and is being entirely driven by the presence of the massive particles. For a medium in LTE, the emission coefficient and absorption coefficient are functions of temperature and density only, and are related by:

where is the black body spectral radiance at temperature T. The solution to the equation of radiative transfer is then:

Knowing the temperature profile and the density profile of the medium is sufficient to calculate a solution to the equation of radiative transfer.

The Eddington approximation

The Eddington approximation is distinct from the two-stream approximation. The two-stream approximation assumes that the intensity is constant with angle in the upward hemisphere, with a different constant value in the downward hemisphere. The Eddington approximation instead assumes that the intensity is a linear function of , i.e.

where is the normal direction to the slab-like medium. Note that expressing angular integrals in terms of simplifies things because appears in the Jacobian of integrals in spherical coordinates. The Eddington approximation can be used to obtain the spectral radiance in a "plane-parallel" medium (one in which properties only vary in the perpendicular direction) with isotropic frequency-independent scattering.

Extracting the first few moments of the spectral radiance with respect to yields

Thus the Eddington approximation is equivalent to setting . Higher order versions of the Eddington approximation also exist, and consist of more complicated linear relations of the intensity moments. This extra equation can be used as a closure relation for the truncated system of moments.

Note that the first two moments have simple physical meanings. is the isotropic intensity at a point, and is the flux through that point in the direction.

The radiative transfer through an isotropically scattering medium with scattering coefficient at local thermodynamic equilibrium is given by

Integrating over all angles yields

Premultiplying by , and then integrating over all angles gives

Substituting in the closure relation, and differentiating with respect to allows the two above equations to be combined to form the radiative diffusion equation

This equation shows how the effective optical depth in scattering-dominated systems may be significantly different from that given by the scattering opacity if the absorptive opacity is small.

See also

References

  1. ^ S. Chandrasekhar (1960). Radiative Transfer. Dover Publications Inc. p. 393. ISBN 978-0-486-60590-6.
  2. ^ Jacqueline Lenoble (1985). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A. Deepak Publishing. p. 583. ISBN 978-0-12-451451-5.

Further reading

Read other articles:

In this Ottoman Turkish style name, the given name is Osman Bayezid. There is no family name. Head of the Osmanoğlu family Bayezid Osman OsmanoğluHead of the Osmanoğlu familyTerm23 September 2009 – 6 January 2017PredecessorŞehzade Ertuğrul OsmanSuccessorŞehzade Dündar Ali OsmanBorn(1924-06-23)23 June 1924Paris, FranceDied6 January 2017(2017-01-06) (aged 92)New York City, United StatesHouseImperial House of OsmanFatherŞehzade Ibrahim TevfikMotherHatice Şadiye Hanım Bayezid Osm...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2020) اضغط هنا للاطلاع على كيفية قراءة التصنيف سمك سيفي السن   المرتبة التصنيفية فصيلة[1]  التصنيف العلمي  فوق النطاق  حيويات مملكة عليا  حقيقيات ...

 

 

Jo & Jay Detektif Jaman NowGenre Drama Roman Komedi PembuatAmanah Surga ProductionsDitulis olehAufa QianzoCeritaAufa QianzoSutradaraAi ManafPemeran Ricky Harun Andrew Andika Melody Prima Fita Anggriani Indah Permatasari Abhie Cancer Joy Octaviano Adhitya Alkatiri Ananda George Rudy Kawilarang Ricky Cuaca Kia Poetri Keira Shabira Penggubah lagu temaThe ChangcutersLagu pembukaGila Gilaan — The ChangcutersLagu penutupGila Gilaan — The ChangcutersPenata musikBobby AbboNegara asalInd...

此条目缺少序言章节。 (2023年8月5日)请协助为条目加入序言章节。更多信息请参阅版面布局指引和序言章节论述。 此條目没有列出任何参考或来源。 (2023年8月5日)維基百科所有的內容都應該可供查證。请协助補充可靠来源以改善这篇条目。无法查证的內容可能會因為異議提出而被移除。 2022–23 多伦多猛龙赛季主教练尼克·納斯总经理鮑比·韋伯斯特(英语:Bobby Webster)擁有...

 

 

Serrana azul, também conhecida por cabra azul e as vezes chamada de cabra serrana, é uma raça de cabra surgida na região nordeste do Brasil.[1] História Desde o descobrimento do Brasil, os portugueses trouxeram diversos tipos de cabra ao país, muitas foram deixadas principalmente no nordeste onde tiveram que se adaptar e sobreviver, desenvolvendo-se por séculos, resultando nos animais atuais. A cabra serrana azul é descendente direta da cabra serrana de origem portuguesa. Porém a ra...

 

 

Клятва Джантая Жанр історичнийРежисер Анатолій КабуловСценарист Рудольф ТюрінУ головних ролях Карім МірхадієвДжамал ХашимовОператор Даврон АбдуллаєвКомпозитор Руміль ВільдановХудожник Євген ПушинКінокомпанія «Узбекфільм»Тривалість 91 хв.Країна  СРСРРік 1984IMDb ID&#...

Family and wine company For other uses, see Frescobaldi (disambiguation). The Frescobaldi coat of arms at the Palace of the Podestà in Galluzzo Impalement of the coat of arms of Frescobaldi (left) and Albizzi (right), probably created upon the wedding of Angiolo Frescobaldi and Leonida degli Albizzi (19th century) The Frescobaldi are a prominent Florentine noble family that have been involved in the political, social, and economic history of Tuscany since the Middle Ages. Originating in the ...

 

 

這是於發生於臺灣戰後時期的民意代表爭議事件列表,時間為1945年中華民國接管臺灣起至今。 2006年 嘉義縣議員王金山的兒子捉弄弱智同學並朝該生吐口水,老師處罰縣議員的兒子跑教室100圈,縣議員認為老師不當體罰,造成他兒子身心受創,向校方抗議要求處罰老師並告上嘉義縣教育局[1][2]。 立法委員杜文卿因為攜帶20條香菸入海關,遭海關要求補稅,杜文卿...

 

 

1992 single by Bruce Springsteen This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Human Touch Bruce Springsteen song – news · newspapers · books · scholar · JSTOR (October 2018) (Learn how and when to remove this template message) Human TouchSingle by Bruce Springsteenfrom the album Human Touch B-sideSou...

Research institute in Carlsbad, California This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gemological Institute of America – news · newspapers · books · scholar · JSTOR (June 2023) (Learn how and when to remove this template message) Gemological Institute of America (GIA)TypePrivateEstablished1931Academic s...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2021) ثمن الولاء ثمن الولاء: جورج دبليو بوش، البيت الأبيض، وتعاليم بول أونيل معلومات الكتاب المؤلف رون ساسكيند اللغة إنجليزية الناشر سايمون اند شوستر تاريخ النشر ...

 

 

Moslares de la Vega localidad Moslares de la VegaUbicación de Moslares de la Vega en España. Moslares de la VegaUbicación de Moslares de la Vega en la provincia de Palencia.País  España• Com. autónoma  Castilla y León• Provincia  Palencia• Comarca Vega-Valdavia• Municipio Renedo de la VegaUbicación 42°27′42″N 4°42′54″O / 42.461666666667, -4.715Población 50 hab. (INE 2018)Código postal 34126...

2011 American documentary film ReaganRelease posterDirected byEugene JareckiWritten byEugene JareckiProduced byEugene Jarecki CinematographyÉtienne SauretEdited bySimon BarkerMusic byRobert MillerProductioncompanyCharlotte Street FilmsDistributed byHBO (USA) BBC (UK, on BBC4)Release dateJanuary 23, 2011Running time105 minutesCountryUnited StatesReagan is a 2011 American documentary film, written and directed by Eugene Jarecki, covering the life and presidency of Ronald Reagan. The documentar...

 

 

This article may need to be rewritten to comply with Wikipedia's quality standards. You can help. The talk page may contain suggestions. (October 2023) Hospital in Kerala, IndiaJubilee Mission Medical College & Research InstituteGeographyLocationThrissur, Kerala, IndiaCoordinates10°31′14″N 76°13′35″E / 10.5205°N 76.2263°E / 10.5205; 76.2263OrganisationCare systemChurch-OwnedFundingNon-profit hospitalTypeTeachingAffiliated universityKerala University of ...

 

 

Shopping mall in New South Wales, AustraliaWestfield TuggerahLocationTuggerah, New South Wales, AustraliaCoordinates33°18′30″S 151°24′48″E / 33.30824°S 151.41332°E / -33.30824; 151.41332Address50 Wyong Rd, Tuggerah NSW 2259Opening date19 October 1995; 28 years ago (19 October 1995)ManagementScentre GroupOwnerScentre GroupNo. of stores and services244No. of anchor tenants7Total retail floor area84,238 m2 (906,730 sq ft)No. of floo...

American TV series or program Winsome WitchTitle cardDirected byWilliam HannaJoseph BarberaVoices ofJean Vander PylTheme music composerHoyt CurtinCountry of originUnited StatesOriginal languageEnglishNo. of seasons2No. of episodes26ProductionProducersWilliam HannaJoseph BarberaRunning time6 minutes (per short)Production companyHanna-Barbera ProductionsOriginal releaseNetworkNBCReleaseOctober 2, 1965 (1965-10-02) –September 7, 1967 (1967-09-07)RelatedThe Atom Ant/Secret S...

 

 

Legislative Assembly constituency in Karnataka State, India SindhanurConstituency for the Karnataka Legislative AssemblyConstituency detailsCountryIndiaRegionSouth IndiaStateKarnatakaDistrictRaichurLS constituencyKoppalTotal electors239,285[1]ReservationNoneMember of Legislative Assembly16th Karnataka Legislative AssemblyIncumbent Hampanagouda Badarli PartyIndian National Congress Sindhanur Legislative Assembly constituency is one of the 224 Legislative Assembly constituencies of Karn...

 

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: TV Shinshu – news · newspapers · books · scholar · JSTOR (June 2018) (Learn how and when to remove this template message) Television ShinshuTrade nameTV Shinshu Co., Ltd.Native name株式会社 テレビ信州Romanized nameKabushikigaisha TerebishinshūTypeKabu...

Fold in the interior lining of the right atrium of the heart Valve of the coronary sinusInterior of right side of heart. (Valve of the coronary sinus labeled at bottom left.)DetailsIdentifiersLatinvalvula sinus coronariiTA98A12.1.01.016TA24030FMA9242Anatomical terminology[edit on Wikidata] In the anatomy of the heart, the valve of the coronary sinus (also called the Thebesian valve, after Adam Christian Thebesius[1][2][3]) is a valve located at the orifice of the c...

 

 

German physicist, mathematician and musician Chladni redirects here. For the lunar crater, see Chladni (crater). Ernst ChladniBorn30 November 1756 (1756-11-30)Wittenberg, SaxonyDied3 April 1827 (1827-04-04) (aged 70)Breslau, Prussia, German ConfederationNationalityGermanKnown forStudy of acousticsChladni plates and figuresEstimating the speed of soundChladni's lawTheory of meteorites' originsScientific careerFieldsPhysicsInstitutionsUniversity of Erlangen, University of Le...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!