Quantum Cramér–Rao bound

The quantum Cramér–Rao bound is the quantum analogue of the classical Cramér–Rao bound. It bounds the achievable precision in parameter estimation with a quantum system:

where is the number of independent repetitions, and is the quantum Fisher information.[1][2]

Here, is the state of the system and is the Hamiltonian of the system. When considering a unitary dynamics of the type

where is the initial state of the system, is the parameter to be estimated based on measurements on

Simple derivation from the Heisenberg uncertainty relation

Let us consider the decomposition of the density matrix to pure components as

The Heisenberg uncertainty relation is valid for all

From these, employing the Cauchy-Schwarz inequality we arrive at [3]

Here [4]

is the error propagation formula, which roughly tells us how well can be estimated by measuring Moreover, the convex roof of the variance is given as[5][6]

where is the quantum Fisher information.

References

  1. ^ Braunstein, Samuel L.; Caves, Carlton M. (1994-05-30). "Statistical distance and the geometry of quantum states". Physical Review Letters. 72 (22). American Physical Society (APS): 3439–3443. Bibcode:1994PhRvL..72.3439B. doi:10.1103/physrevlett.72.3439. ISSN 0031-9007. PMID 10056200.
  2. ^ Braunstein, Samuel L.; Caves, Carlton M.; Milburn, G.J. (April 1996). "Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance". Annals of Physics. 247 (1): 135–173. arXiv:quant-ph/9507004. Bibcode:1996AnPhy.247..135B. doi:10.1006/aphy.1996.0040. S2CID 358923.
  3. ^ Tóth, Géza; Fröwis, Florian (31 January 2022). "Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices". Physical Review Research. 4 (1): 013075. arXiv:2109.06893. Bibcode:2022PhRvR...4a3075T. doi:10.1103/PhysRevResearch.4.013075. S2CID 237513549.
  4. ^ Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K.; Schmied, Roman; Treutlein, Philipp (5 September 2018). "Quantum metrology with nonclassical states of atomic ensembles". Reviews of Modern Physics. 90 (3): 035005. arXiv:1609.01609. Bibcode:2018RvMP...90c5005P. doi:10.1103/RevModPhys.90.035005. S2CID 119250709.
  5. ^ Tóth, Géza; Petz, Dénes (20 March 2013). "Extremal properties of the variance and the quantum Fisher information". Physical Review A. 87 (3): 032324. arXiv:1109.2831. Bibcode:2013PhRvA..87c2324T. doi:10.1103/PhysRevA.87.032324. S2CID 55088553.
  6. ^ Yu, Sixia (2013). "Quantum Fisher Information as the Convex Roof of Variance". arXiv:1302.5311 [quant-ph].

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!