The quantum Cramér–Rao bound is the quantum analogue of the classical Cramér–Rao bound . It bounds the achievable precision in parameter estimation with a quantum system:
(
Δ Δ -->
θ θ -->
)
2
≥ ≥ -->
1
m
F
Q
[
ϱ ϱ -->
,
H
]
,
{\displaystyle (\Delta \theta )^{2}\geq {\frac {1}{mF_{\rm {Q}}[\varrho ,H]}},}
where
m
{\displaystyle m}
is the number of independent repetitions, and
F
Q
[
ϱ ϱ -->
,
H
]
{\displaystyle F_{\rm {Q}}[\varrho ,H]}
is the quantum Fisher information .[ 1] [ 2]
Here,
ϱ ϱ -->
{\displaystyle \varrho }
is the state of the system and
H
{\displaystyle H}
is the Hamiltonian of the system. When considering a unitary dynamics of the type
ϱ ϱ -->
(
θ θ -->
)
=
exp
-->
(
− − -->
i
H
θ θ -->
)
ϱ ϱ -->
0
exp
-->
(
+
i
H
θ θ -->
)
,
{\displaystyle \varrho (\theta )=\exp(-iH\theta )\varrho _{0}\exp(+iH\theta ),}
where
ϱ ϱ -->
0
{\displaystyle \varrho _{0}}
is the initial state of the system,
θ θ -->
{\displaystyle \theta }
is the parameter to be estimated based on measurements on
ϱ ϱ -->
(
θ θ -->
)
.
{\displaystyle \varrho (\theta ).}
Simple derivation from the Heisenberg uncertainty relation
Let us consider the decomposition of the density matrix to pure components as
ϱ ϱ -->
=
∑ ∑ -->
k
p
k
|
Ψ Ψ -->
k
⟩ ⟩ -->
⟨ ⟨ -->
Ψ Ψ -->
k
|
.
{\displaystyle \varrho =\sum _{k}p_{k}\vert \Psi _{k}\rangle \langle \Psi _{k}\vert .}
The Heisenberg uncertainty relation is valid for all
|
Ψ Ψ -->
k
⟩ ⟩ -->
{\displaystyle \vert \Psi _{k}\rangle }
(
Δ Δ -->
A
)
Ψ Ψ -->
k
2
(
Δ Δ -->
B
)
Ψ Ψ -->
k
2
≥ ≥ -->
1
4
|
⟨ ⟨ -->
i
[
A
,
B
]
⟩ ⟩ -->
Ψ Ψ -->
k
|
2
.
{\displaystyle (\Delta A)_{\Psi _{k}}^{2}(\Delta B)_{\Psi _{k}}^{2}\geq {\frac {1}{4}}|\langle i[A,B]\rangle _{\Psi _{k}}|^{2}.}
From these, employing the Cauchy-Schwarz inequality we arrive at [ 3]
(
Δ Δ -->
θ θ -->
)
A
2
≥ ≥ -->
1
4
min
{
p
k
,
Ψ Ψ -->
k
}
[
∑ ∑ -->
k
p
k
(
Δ Δ -->
B
)
Ψ Ψ -->
k
2
]
.
{\displaystyle (\Delta \theta )_{A}^{2}\geq {\frac {1}{4\min _{\{p_{k},\Psi _{k}\}}[\sum _{k}p_{k}(\Delta B)_{\Psi _{k}}^{2}]}}.}
Here [ 4]
(
Δ Δ -->
θ θ -->
)
A
2
=
(
Δ Δ -->
A
)
2
|
∂ ∂ -->
θ θ -->
⟨ ⟨ -->
A
⟩ ⟩ -->
|
2
=
(
Δ Δ -->
A
)
2
|
⟨ ⟨ -->
i
[
A
,
B
]
⟩ ⟩ -->
|
2
{\displaystyle (\Delta \theta )_{A}^{2}={\frac {(\Delta A)^{2}}{|\partial _{\theta }\langle A\rangle |^{2}}}={\frac {(\Delta A)^{2}}{|\langle i[A,B]\rangle |^{2}}}}
is the error propagation formula, which roughly tells us how well
θ θ -->
{\displaystyle \theta }
can be estimated by measuring
A
.
{\displaystyle A.}
Moreover, the convex roof of the variance is given as[ 5] [ 6]
min
{
p
k
,
Ψ Ψ -->
k
}
[
∑ ∑ -->
k
p
k
(
Δ Δ -->
B
)
Ψ Ψ -->
k
2
]
=
1
4
F
Q
[
ϱ ϱ -->
,
B
]
,
{\displaystyle \min _{\{p_{k},\Psi _{k}\}}\left[\sum _{k}p_{k}(\Delta B)_{\Psi _{k}}^{2}\right]={\frac {1}{4}}F_{Q}[\varrho ,B],}
where
F
Q
[
ϱ ϱ -->
,
B
]
{\displaystyle F_{Q}[\varrho ,B]}
is the quantum Fisher information .
References
^ Braunstein, Samuel L.; Caves, Carlton M. (1994-05-30). "Statistical distance and the geometry of quantum states". Physical Review Letters . 72 (22). American Physical Society (APS): 3439– 3443. Bibcode :1994PhRvL..72.3439B . doi :10.1103/physrevlett.72.3439 . ISSN 0031-9007 . PMID 10056200 .
^ Braunstein, Samuel L.; Caves, Carlton M. ; Milburn, G.J. (April 1996). "Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance". Annals of Physics . 247 (1): 135– 173. arXiv :quant-ph/9507004 . Bibcode :1996AnPhy.247..135B . doi :10.1006/aphy.1996.0040 . S2CID 358923 .
^ Tóth, Géza; Fröwis, Florian (31 January 2022). "Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices". Physical Review Research . 4 (1): 013075. arXiv :2109.06893 . Bibcode :2022PhRvR...4a3075T . doi :10.1103/PhysRevResearch.4.013075 . S2CID 237513549 .
^ Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K.; Schmied, Roman; Treutlein, Philipp (5 September 2018). "Quantum metrology with nonclassical states of atomic ensembles". Reviews of Modern Physics . 90 (3): 035005. arXiv :1609.01609 . Bibcode :2018RvMP...90c5005P . doi :10.1103/RevModPhys.90.035005 . S2CID 119250709 .
^ Tóth, Géza; Petz, Dénes (20 March 2013). "Extremal properties of the variance and the quantum Fisher information". Physical Review A . 87 (3): 032324. arXiv :1109.2831 . Bibcode :2013PhRvA..87c2324T . doi :10.1103/PhysRevA.87.032324 . S2CID 55088553 .
^ Yu, Sixia (2013). "Quantum Fisher Information as the Convex Roof of Variance". arXiv :1302.5311 [quant-ph ].