Polyphase matrix

In signal processing, a polyphase matrix is a matrix whose elements are filter masks. It represents a filter bank as it is used in sub-band coders alias discrete wavelet transforms.[1]

If are two filters, then one level the traditional wavelet transform maps an input signal to two output signals , each of the half length:

Note, that the dot means polynomial multiplication; i.e., convolution and means downsampling.

If the above formula is implemented directly, you will compute values that are subsequently flushed by the down-sampling. You can avoid their computation by splitting the filters and the signal into even and odd indexed values before the wavelet transformation:

The arrows and denote left and right shifting, respectively. They shall have the same precedence like convolution, because they are in fact convolutions with a shifted discrete delta impulse.

The wavelet transformation reformulated to the split filters is:

This can be written as matrix-vector-multiplication

This matrix is the polyphase matrix.

Of course, a polyphase matrix can have any size, it need not to have square shape. That is, the principle scales well to any filterbanks, multiwavelets, wavelet transforms based on fractional refinements.

Properties

The representation of sub-band coding by the polyphase matrix is more than about write simplification. It allows the adaptation of many results from matrix theory and module theory. The following properties are explained for a matrix, but they scale equally to higher dimensions.

Invertibility/perfect reconstruction

The case that a polyphase matrix allows reconstruction of a processed signal from the filtered data, is called perfect reconstruction property. Mathematically this is equivalent to invertibility. According to the theorem of invertibility of a matrix over a ring, the polyphase matrix is invertible if and only if the determinant of the polyphase matrix is a Kronecker delta, which is zero everywhere except for one value.

By Cramer's rule the inverse of can be given immediately.

Orthogonality

Orthogonality means that the adjoint matrix is also the inverse matrix of . The adjoint matrix is the transposed matrix with adjoint filters.

It implies, that the Euclidean norm of the input signals is preserved. That is, the according wavelet transform is an isometry.

The orthogonality condition

can be written out

Operator norm

For non-orthogonal polyphase matrices the question arises what Euclidean norms the output can assume. This can be bounded by the help of the operator norm.

For the polyphase matrix the Euclidean operator norm can be given explicitly using the Frobenius norm and the z transform :[2]

This is a special case of the matrix where the operator norm can be obtained via z transform and the spectral radius of a matrix or the according spectral norm.

A signal, where these bounds are assumed can be derived from the eigenvector corresponding to the maximizing and minimizing eigenvalue.

Lifting scheme

The concept of the polyphase matrix allows matrix decomposition. For instance the decomposition into addition matrices leads to the lifting scheme.[3] However, classical matrix decompositions like LU and QR decomposition cannot be applied immediately, because the filters form a ring with respect to convolution, not a field.

References

  1. ^ Strang, Gilbert; Nguyen, Truong (1997). Wavelets and Filter Banks. Wellesley-Cambridge Press. ISBN 0-9614088-7-1.
  2. ^ Thielemann, Henning (2001). Adaptive construction of wavelets for image compression (Diploma thesis). Martin-Luther-Universität Halle-Wittenberg, Fachbereich Mathematik/Informatik. Archived from the original on 2011-07-18. Retrieved 2006-11-10.
  3. ^ Daubechies, Ingrid; Sweldens, Wim (1998). "Factoring wavelet transforms into lifting steps". J. Fourier Anal. Appl. 4 (3): 245–267. doi:10.1007/BF02476026. S2CID 195242970. Archived from the original on 2006-12-07.

Read other articles:

Super Sentai SeriesDiciptakan olehShotaro IshinomoriToei CompanyKarya asliHimitsu Sentai GorengerPemilikTV Asahi (1975–sekarang)Toei Company (1975–sekarang)Toei Advertising (1979–sekarang)Ishimori Productions (Hanya Gorenger, JAKQ Dengekitai dan Gokaiger)Marvel Entertainment (1979-sekarang; Hanya Battle Fever J, Denziman dan Sun Vulcan)Film dan serial televisiSerial televisiSee belowPermainanTradisionalRangers StrikePermainan videoSuper Sentai Battle: Dice-OAudioMusik asliProject.RDan l...

 

Lembah Chumbi, 1938. Lembah Chumbi (Tibet: ཆུ་འབི; Wylie: chu vbi; Hanzi: 春丕河谷; Pinyin: Chūnpī Hégǔ[1]) adalah sebuah lembah di Tibet di sebuah perbatasan antara India (Sikkim), Bhutan dan China (Tibet) di Pegunungan Himalaya. Dua jalur perbatasan antara India dan China dibuka di sana: Jalur Perbatasan Nathu La dan Jalur Perbatasan Jelep La. Secara administratif, lembah tersebut berada di Kabupaten Yadong, Wilayah Otonomi Tibet. Lembah tersebut...

 

Dalam artikel ini, nama keluarganya adalah Kim. Kim Joo-ryoungLahir10 September 1976 (umur 47)Korea SelatanPekerjaanAktrisTahun aktif2000–sekarangAgenJust Entertainment[1]Nama KoreaHangul김주령 Alih AksaraGim Ju-ryeongMcCune–ReischauerKim Churyŏng Kim Joo-ryoung (Hangul: 김주령; lahir 10 September 1976) adalah pemeran asal Korea Selatan. Filmografi Film Tahun Judul Peran Catatan Ref. 2000 Plum Blossom Werther [2] 2001 Sorum Ibu Yong Hyun 2003 Memo...

Hartmut Stielow, BalanceDer Skulpturenweg Trippstadt-Stelzenberg südlich von Trippstadt, Landkreis Kaiserslautern, im Südwesten von Rheinland-Pfalz ist ein Teilstück des Skulpturenwegs Rheinland-Pfalz. Inhaltsverzeichnis 1 Projektbeschreibung 2 Präsente Künstler und Werke 3 Fotos (Auswahl) 4 Literatur 5 Weblinks 6 Einzelnachweise Projektbeschreibung Die Förderung des Landes Rheinland-Pfalz von Kunstprojekten im öffentlichen Raum führte mit drei Bildhauersymposien zwischen 1990 und 199...

 

Liberk Liberk (Tschechien) Basisdaten Staat: Tschechien Tschechien Region: Královéhradecký kraj Bezirk: Rychnov nad Kněžnou Fläche: 5408 ha Geographische Lage: 50° 12′ N, 16° 21′ O50.19913616.342324610Koordinaten: 50° 11′ 57″ N, 16° 20′ 32″ O Höhe: 610 m n.m. Einwohner: 681 (1. Jan. 2023)[1] Postleitzahl: 517 03 – 517 12 Kfz-Kennzeichen: H Verkehr Straße: Rychnov nad Kněžnou – Zdobnice Struk...

 

專線小巴52K線概覽營運公司德啟投資使用車輛豐田Coaster线路信息起點站粉嶺站途經聯和墟(客滿經)、沙頭角公路、坪輋路終點站坪輋昇平村服務時間往坪輋:05:00-00:30往粉嶺站:04:30-00:00班次頻率4-10分鐘票价$6.3下行分段收费站点見下面上行分段收费站点見下面相关路線競爭交通九龍巴士79K線、的士 專線小巴52B線概覽營運公司德啟投資使用車輛豐田Coaster线路信息起點站粉

Dorothy BurgessBurgess, 1930Lahir(1907-03-04)4 Maret 1907Los Angeles, A.S.Meninggal20 Agustus 1961(1961-08-20) (umur 54)Woodland Hills, California, A.S.MakamChapel of the Pines Crematory, Los Angeles, CaliforniaPekerjaanAktrisTahun aktif1926–1943 Dorothy Burgess (4 Maret 1907 – 20 Agustus 1961) adalah seorang aktris panggung dan film Amerika. Biografi Lahir di Los Angeles pada tahun 1907, Burgess adalah keponakan dari Fay Bainter.[butuh rujukan] Di pihak ay...

 

Neha MardaMarda pada tahun 2014Lahir23 September 1985 (umur 38)Kolkata, Benggala Barat, IndiaKebangsaanIndianPekerjaanAktris, PenariTahun aktif2005-sekarangDikenal atas Balika Vadhu Doli Armaano Ki Kyun Rishton Mein Katti Batti Jhalak Dikhhla Jaa Suami/istriAyushman Agarwal ​(m. 2012)​Anak1 Neha Marda (lahir 23 September 1985) adalah seorang aktris televisi India yang dikenal karena perannya sebagai Gehna Singh di Balika Vadhu.[1][2] Pada...

 

Lexus UX (ZA10)2018 Lexus UX 250h F Sport (MZAH10)InformasiProdusenLexus (Toyota)Masa produksiDecember 2018 – sekarang[1]Model untuk tahun2019–sekarangPerakitanJapan: Miyawaka, Fukuoka (Miyata plant)[1]PerancangChika Kako (2013)[2]Bodi & rangkaKelasSUVBentuk kerangka5-door SUVTata letakMesin depan, penggerak roda depan / penggerak 4 rodaPlatformTNGA: GA-C[3]Mobil terkaitToyota C-HRPenyalur dayaMesin2.0 L M20A-FKS I4 (petrol, 200)2.0 L M20A-FXS...

  هذه المقالة عن الخطيب التَّبريزي المتوفي 502 هـ. لمعانٍ أخرى، طالع التبريزي. أبو زكريا التبريزي معلومات شخصية الميلاد سنة 1030  تبريز  الوفاة سنة 1109 (78–79 سنة)  بغداد  الإقامة العراق مواطنة  الدولة العباسية الجنسية عباسي العرق العرب الديانة أهل السنة والجما

 

Pemilihan umum Bupati Lanny Jaya 20172012202215 Februari 2017Kandidat   Calon Befa Yigibalom Briyur Wenda Partai Demokrat PAN Pendamping Yemis Kogoya Paulus Kogoya Suara rakyat 73.748 39.182 Persentase 65,3% 34,7% Peta persebaran suara Peta lokasi Lanny Jaya Bupati dan Wakil Bupati petahanaBefa Yigibalom dan Berthus Kogoya Demokrat Bupati dan Wakil Bupati terpilih Befa Yigibalom dan Yemis Kogoya Demokrat Sunting kotak info • L • BBantuan penggunaan templat ini Pemiliha...

 

Maximum rate of data transfer This article is about use in computing and networking expressed in bits per second. For the concept in signal theory and processing measured in hertz, see Bandwidth (signal processing). For other uses, see Bandwidth (disambiguation). In computing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth,[1] data bandwidth,[2] or digital bandwidth.[3][4] This definition ...

1985 television special Snoopy's Getting Married, Charlie BrownGenreAnimationCreated byCharles M. SchulzWritten byCharles M. SchulzDirected byBill MelendezVoices ofBrett JohnsonStacy FergusonJeremy SchoenbergHeather StonemanGini HoltzmanKeri HoulihanDaniel ColbyBill MelendezComposerJudy MunsenCountry of originUnited StatesOriginal languageEnglishProductionExecutive producerCharles M. Schulz Creative AssociatesCamera setupNick VasuRunning time28 minutesProduction companiesLee Mendelson Film Pr...

 

Беріл Каннінгемангл. Beryl Cunningham Народилася 8 серпня 1946(1946-08-08)Монтего-Бей, Сент-Джеймс, ЯмайкаПомерла 11 грудня 2020(2020-12-11) (74 роки)Борбона, Провінція Рієті, Лаціо, ІталіяГромадянство  ЯмайкаДіяльність кіноакторка, співачка, модельУ шлюбі з П'єро ВіварелліIMDb nm0192241  Беріл Ка...

 

American college basketball season 2011–12 Michigan Wolverines men's basketballBig Ten regular season co-championsNCAA tournament, Round of 64ConferenceBig Ten ConferenceRankingCoachesNo. 22APNo. 13Record24–10 (13–5 Big Ten)Head coachJohn BeileinAssistant coaches Jeff Meyer LaVall Jordan Bacari Alexander Captains Zack Novak Stu Douglass Home arenaCrisler CenterSeasons← 2010–112012–13 → 2011–12 Big Ten Conference men's basketball standings ...

TermodinamikaMesin panas klasik Carnot Cabang Klasik Statistik Kimia Termodinamika kuantum Kesetimbangan / Tak setimbang Hukum Awal Pertama Kedua Ketiga Sistem Keadaan Persamaan keadaan Gas ideal Gas nyata Wujud zat Kesetimbangan Volume kontrol Instrumen Proses Isobarik Isokorik Isotermis Adiabatik Isentropik Isentalpik Quasistatik Politropik Ekspansi bebas Reversibel Ireversibel Endoreversibilitas Siklus Mesin kalor Pompa kalor Efisiensi termal Properti sistemCatatan: Variabel konjugat ...

 

MasadaMasada performing, c2005; L.-R. Joey Baron (dr), Greg Cohen (b), Dave Douglas (tr), John Zorn (sax)Background informationGenresKlezmerExperimentalJazzLabelsTzadik RecordsPast membersJohn ZornJoey BaronGreg CohenDave Douglas Masada is a musical group with rotating personnel led by American saxophonist and composer John Zorn since the early 1990s. Masada was the first ensemble to perform Zorn's compositions inspired by Radical Jewish Culture and written to be performed by small groups of ...

 

Family of aircraft radar systems ZhukZhuk-ME Antenna at MAKS 2007Country of originRussiaTypeSlotted Planar/PESA/AESAFrequencyX-bandRange90 to 260 km, depending on variant The Zhuk are a family of Russian (former USSR) all-weather multimode airborne radars developed by NIIR Phazotron for multi-role combat aircraft such as the MiG-29 and the Su-27. The PESA versions were also known as the Sokol. Description The Zhuk (Beetle) family of X band pulse-Doppler radars provide aircraft with ...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Detention 2010 film – news · newspapers · books · scholar · JSTOR (December 2012) (Learn how and when to remove this template message) 2010 filmDetentionTheatrical release posterDirected byJames D.R. HickoxScreenplay by Michael Muscal John Stienfield Story...

 

Cognitive processes necessary for control of behavior Not to be confused with Executive (government). For similar terms, see Adaptive behavior and Self-control. Neuropsychology Topics Brain regions Clinical neuropsychology Cognitive neuropsychology Cognitive neuroscience Dementia Human brain Neuroanatomy Neurophysiology Neuropsychological assessment Neuropsychological rehabilitation Traumatic brain injury Brain functions Arousal Attention Consciousness Decision making Executive functions Natu...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!