Meromorphic function
Graphs of the polygamma functions ψ , ψ (1) , ψ (2) and ψ (3) of real arguments
Plot of the digamma function , the first polygamma function, in the complex plane from −2−2i to 2+2i with colors created by Mathematica's function ComplexPlot3D showing one cycle of phase shift around each pole and the zero
In mathematics , the polygamma function of order m is a meromorphic function on the complex numbers
C
{\displaystyle \mathbb {C} }
defined as the (m + 1) th derivative of the logarithm of the gamma function :
ψ ψ -->
(
m
)
(
z
)
:=
d
m
d
z
m
ψ ψ -->
(
z
)
=
d
m
+
1
d
z
m
+
1
ln
-->
Γ Γ -->
(
z
)
.
{\displaystyle \psi ^{(m)}(z):={\frac {\mathrm {d} ^{m}}{\mathrm {d} z^{m}}}\psi (z)={\frac {\mathrm {d} ^{m+1}}{\mathrm {d} z^{m+1}}}\ln \Gamma (z).}
Thus
ψ ψ -->
(
0
)
(
z
)
=
ψ ψ -->
(
z
)
=
Γ Γ -->
′
(
z
)
Γ Γ -->
(
z
)
{\displaystyle \psi ^{(0)}(z)=\psi (z)={\frac {\Gamma '(z)}{\Gamma (z)}}}
holds where ψ (z ) is the digamma function and Γ(z ) is the gamma function . They are holomorphic on
C
∖ ∖ -->
Z
≤ ≤ -->
0
{\displaystyle \mathbb {C} \backslash \mathbb {Z} _{\leq 0}}
. At all the nonpositive integers these polygamma functions have a pole of order m + 1 . The function ψ (1) (z ) is sometimes called the trigamma function .
The logarithm of the gamma function and the first few polygamma functions in the complex plane
ln Γ(z )
ψ (0) (z )
ψ (1) (z )
ψ (2) (z )
ψ (3) (z )
ψ (4) (z )
Integral representation
When m > 0 and Re z > 0 , the polygamma function equals
ψ ψ -->
(
m
)
(
z
)
=
(
− − -->
1
)
m
+
1
∫ ∫ -->
0
∞ ∞ -->
t
m
e
− − -->
z
t
1
− − -->
e
− − -->
t
d
t
=
− − -->
∫ ∫ -->
0
1
t
z
− − -->
1
1
− − -->
t
(
ln
-->
t
)
m
d
t
=
(
− − -->
1
)
m
+
1
m
!
ζ ζ -->
(
m
+
1
,
z
)
{\displaystyle {\begin{aligned}\psi ^{(m)}(z)&=(-1)^{m+1}\int _{0}^{\infty }{\frac {t^{m}e^{-zt}}{1-e^{-t}}}\,\mathrm {d} t\\&=-\int _{0}^{1}{\frac {t^{z-1}}{1-t}}(\ln t)^{m}\,\mathrm {d} t\\&=(-1)^{m+1}m!\zeta (m+1,z)\end{aligned}}}
where
ζ ζ -->
(
s
,
q
)
{\displaystyle \zeta (s,q)}
is the Hurwitz zeta function .
This expresses the polygamma function as the Laplace transform of (−1)m +1 tm / 1 − e −t . It follows from Bernstein's theorem on monotone functions that, for m > 0 and x real and non-negative, (−1)m +1 ψ (m ) (x ) is a completely monotone function.
Setting m = 0 in the above formula does not give an integral representation of the digamma function. The digamma function has an integral representation, due to Gauss, which is similar to the m = 0 case above but which has an extra term e −t / t .
Recurrence relation
It satisfies the recurrence relation
ψ ψ -->
(
m
)
(
z
+
1
)
=
ψ ψ -->
(
m
)
(
z
)
+
(
− − -->
1
)
m
m
!
z
m
+
1
{\displaystyle \psi ^{(m)}(z+1)=\psi ^{(m)}(z)+{\frac {(-1)^{m}\,m!}{z^{m+1}}}}
which – considered for positive integer argument – leads to a presentation of the sum of reciprocals of the powers of the natural numbers:
ψ ψ -->
(
m
)
(
n
)
(
− − -->
1
)
m
+
1
m
!
=
ζ ζ -->
(
1
+
m
)
− − -->
∑ ∑ -->
k
=
1
n
− − -->
1
1
k
m
+
1
=
∑ ∑ -->
k
=
n
∞ ∞ -->
1
k
m
+
1
m
≥ ≥ -->
1
{\displaystyle {\frac {\psi ^{(m)}(n)}{(-1)^{m+1}\,m!}}=\zeta (1+m)-\sum _{k=1}^{n-1}{\frac {1}{k^{m+1}}}=\sum _{k=n}^{\infty }{\frac {1}{k^{m+1}}}\qquad m\geq 1}
and
ψ ψ -->
(
0
)
(
n
)
=
− − -->
γ γ -->
+
∑ ∑ -->
k
=
1
n
− − -->
1
1
k
{\displaystyle \psi ^{(0)}(n)=-\gamma \ +\sum _{k=1}^{n-1}{\frac {1}{k}}}
for all
n
∈ ∈ -->
N
{\displaystyle n\in \mathbb {N} }
, where
γ γ -->
{\displaystyle \gamma }
is the Euler–Mascheroni constant . Like the log-gamma function, the polygamma functions can be generalized from the domain
N
{\displaystyle \mathbb {N} }
uniquely to positive real numbers only due to their recurrence relation and one given function-value, say ψ (m ) (1) , except in the case m = 0 where the additional condition of strict monotonicity on
R
+
{\displaystyle \mathbb {R} ^{+}}
is still needed. This is a trivial consequence of the Bohr–Mollerup theorem for the gamma function where strictly logarithmic convexity on
R
+
{\displaystyle \mathbb {R} ^{+}}
is demanded additionally. The case m = 0 must be treated differently because ψ (0) is not normalizable at infinity (the sum of the reciprocals doesn't converge).
Reflection relation
(
− − -->
1
)
m
ψ ψ -->
(
m
)
(
1
− − -->
z
)
− − -->
ψ ψ -->
(
m
)
(
z
)
=
π π -->
d
m
d
z
m
cot
-->
π π -->
z
=
π π -->
m
+
1
P
m
(
cos
-->
π π -->
z
)
sin
m
+
1
-->
(
π π -->
z
)
{\displaystyle (-1)^{m}\psi ^{(m)}(1-z)-\psi ^{(m)}(z)=\pi {\frac {\mathrm {d} ^{m}}{\mathrm {d} z^{m}}}\cot {\pi z}=\pi ^{m+1}{\frac {P_{m}(\cos {\pi z})}{\sin ^{m+1}(\pi z)}}}
where Pm is alternately an odd or even polynomial of degree |m − 1 | with integer coefficients and leading coefficient (−1)m ⌈2m − 1 ⌉ . They obey the recursion equation
P
0
(
x
)
=
x
P
m
+
1
(
x
)
=
− − -->
(
(
m
+
1
)
x
P
m
(
x
)
+
(
1
− − -->
x
2
)
P
m
′
(
x
)
)
.
{\displaystyle {\begin{aligned}P_{0}(x)&=x\\P_{m+1}(x)&=-\left((m+1)xP_{m}(x)+\left(1-x^{2}\right)P'_{m}(x)\right).\end{aligned}}}
Multiplication theorem
The multiplication theorem gives
k
m
+
1
ψ ψ -->
(
m
)
(
k
z
)
=
∑ ∑ -->
n
=
0
k
− − -->
1
ψ ψ -->
(
m
)
(
z
+
n
k
)
m
≥ ≥ -->
1
{\displaystyle k^{m+1}\psi ^{(m)}(kz)=\sum _{n=0}^{k-1}\psi ^{(m)}\left(z+{\frac {n}{k}}\right)\qquad m\geq 1}
and
k
ψ ψ -->
(
0
)
(
k
z
)
=
k
ln
-->
k
+
∑ ∑ -->
n
=
0
k
− − -->
1
ψ ψ -->
(
0
)
(
z
+
n
k
)
{\displaystyle k\psi ^{(0)}(kz)=k\ln {k}+\sum _{n=0}^{k-1}\psi ^{(0)}\left(z+{\frac {n}{k}}\right)}
for the digamma function .
Series representation
The polygamma function has the series representation
ψ ψ -->
(
m
)
(
z
)
=
(
− − -->
1
)
m
+
1
m
!
∑ ∑ -->
k
=
0
∞ ∞ -->
1
(
z
+
k
)
m
+
1
{\displaystyle \psi ^{(m)}(z)=(-1)^{m+1}\,m!\sum _{k=0}^{\infty }{\frac {1}{(z+k)^{m+1}}}}
which holds for integer values of m > 0 and any complex z not equal to a negative integer. This representation can be written more compactly in terms of the Hurwitz zeta function as
ψ ψ -->
(
m
)
(
z
)
=
(
− − -->
1
)
m
+
1
m
!
ζ ζ -->
(
m
+
1
,
z
)
.
{\displaystyle \psi ^{(m)}(z)=(-1)^{m+1}\,m!\,\zeta (m+1,z).}
This relation can for example be used to compute the special values[ 1]
ψ ψ -->
(
2
n
− − -->
1
)
(
1
4
)
=
4
2
n
− − -->
1
2
n
(
π π -->
2
n
(
2
2
n
− − -->
1
)
|
B
2
n
|
+
2
(
2
n
)
!
β β -->
(
2
n
)
)
;
{\displaystyle \psi ^{(2n-1)}\left({\frac {1}{4}}\right)={\frac {4^{2n-1}}{2n}}\left(\pi ^{2n}(2^{2n}-1)|B_{2n}|+2(2n)!\beta (2n)\right);}
ψ ψ -->
(
2
n
− − -->
1
)
(
3
4
)
=
4
2
n
− − -->
1
2
n
(
π π -->
2
n
(
2
2
n
− − -->
1
)
|
B
2
n
|
− − -->
2
(
2
n
)
!
β β -->
(
2
n
)
)
;
{\displaystyle \psi ^{(2n-1)}\left({\frac {3}{4}}\right)={\frac {4^{2n-1}}{2n}}\left(\pi ^{2n}(2^{2n}-1)|B_{2n}|-2(2n)!\beta (2n)\right);}
ψ ψ -->
(
2
n
)
(
1
4
)
=
− − -->
2
2
n
− − -->
1
(
π π -->
2
n
+
1
|
E
2
n
|
+
2
(
2
n
)
!
(
2
2
n
+
1
− − -->
1
)
ζ ζ -->
(
2
n
+
1
)
)
;
{\displaystyle \psi ^{(2n)}\left({\frac {1}{4}}\right)=-2^{2n-1}\left(\pi ^{2n+1}|E_{2n}|+2(2n)!(2^{2n+1}-1)\zeta (2n+1)\right);}
ψ ψ -->
(
2
n
)
(
3
4
)
=
2
2
n
− − -->
1
(
π π -->
2
n
+
1
|
E
2
n
|
− − -->
2
(
2
n
)
!
(
2
2
n
+
1
− − -->
1
)
ζ ζ -->
(
2
n
+
1
)
)
.
{\displaystyle \psi ^{(2n)}\left({\frac {3}{4}}\right)=2^{2n-1}\left(\pi ^{2n+1}|E_{2n}|-2(2n)!(2^{2n+1}-1)\zeta (2n+1)\right).}
Alternately, the Hurwitz zeta can be understood to generalize the polygamma to arbitrary, non-integer order.
One more series may be permitted for the polygamma functions. As given by Schlömilch ,
1
Γ Γ -->
(
z
)
=
z
e
γ γ -->
z
∏ ∏ -->
n
=
1
∞ ∞ -->
(
1
+
z
n
)
e
− − -->
z
n
.
{\displaystyle {\frac {1}{\Gamma (z)}}=ze^{\gamma z}\prod _{n=1}^{\infty }\left(1+{\frac {z}{n}}\right)e^{-{\frac {z}{n}}}.}
This is a result of the Weierstrass factorization theorem . Thus, the gamma function may now be defined as:
Γ Γ -->
(
z
)
=
e
− − -->
γ γ -->
z
z
∏ ∏ -->
n
=
1
∞ ∞ -->
(
1
+
z
n
)
− − -->
1
e
z
n
.
{\displaystyle \Gamma (z)={\frac {e^{-\gamma z}}{z}}\prod _{n=1}^{\infty }\left(1+{\frac {z}{n}}\right)^{-1}e^{\frac {z}{n}}.}
Now, the natural logarithm of the gamma function is easily representable:
ln
-->
Γ Γ -->
(
z
)
=
− − -->
γ γ -->
z
− − -->
ln
-->
(
z
)
+
∑ ∑ -->
k
=
1
∞ ∞ -->
(
z
k
− − -->
ln
-->
(
1
+
z
k
)
)
.
{\displaystyle \ln \Gamma (z)=-\gamma z-\ln(z)+\sum _{k=1}^{\infty }\left({\frac {z}{k}}-\ln \left(1+{\frac {z}{k}}\right)\right).}
Finally, we arrive at a summation representation for the polygamma function:
ψ ψ -->
(
n
)
(
z
)
=
d
n
+
1
d
z
n
+
1
ln
-->
Γ Γ -->
(
z
)
=
− − -->
γ γ -->
δ δ -->
n
0
− − -->
(
− − -->
1
)
n
n
!
z
n
+
1
+
∑ ∑ -->
k
=
1
∞ ∞ -->
(
1
k
δ δ -->
n
0
− − -->
(
− − -->
1
)
n
n
!
(
k
+
z
)
n
+
1
)
{\displaystyle \psi ^{(n)}(z)={\frac {\mathrm {d} ^{n+1}}{\mathrm {d} z^{n+1}}}\ln \Gamma (z)=-\gamma \delta _{n0}-{\frac {(-1)^{n}n!}{z^{n+1}}}+\sum _{k=1}^{\infty }\left({\frac {1}{k}}\delta _{n0}-{\frac {(-1)^{n}n!}{(k+z)^{n+1}}}\right)}
Where δ n 0 is the Kronecker delta .
Also the Lerch transcendent
Φ Φ -->
(
− − -->
1
,
m
+
1
,
z
)
=
∑ ∑ -->
k
=
0
∞ ∞ -->
(
− − -->
1
)
k
(
z
+
k
)
m
+
1
{\displaystyle \Phi (-1,m+1,z)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(z+k)^{m+1}}}}
can be denoted in terms of polygamma function
Φ Φ -->
(
− − -->
1
,
m
+
1
,
z
)
=
1
(
− − -->
2
)
m
+
1
m
!
(
ψ ψ -->
(
m
)
(
z
2
)
− − -->
ψ ψ -->
(
m
)
(
z
+
1
2
)
)
{\displaystyle \Phi (-1,m+1,z)={\frac {1}{(-2)^{m+1}m!}}\left(\psi ^{(m)}\left({\frac {z}{2}}\right)-\psi ^{(m)}\left({\frac {z+1}{2}}\right)\right)}
Taylor series
The Taylor series at z = -1 is
ψ ψ -->
(
m
)
(
z
+
1
)
=
∑ ∑ -->
k
=
0
∞ ∞ -->
(
− − -->
1
)
m
+
k
+
1
(
m
+
k
)
!
k
!
ζ ζ -->
(
m
+
k
+
1
)
z
k
m
≥ ≥ -->
1
{\displaystyle \psi ^{(m)}(z+1)=\sum _{k=0}^{\infty }(-1)^{m+k+1}{\frac {(m+k)!}{k!}}\zeta (m+k+1)z^{k}\qquad m\geq 1}
and
ψ ψ -->
(
0
)
(
z
+
1
)
=
− − -->
γ γ -->
+
∑ ∑ -->
k
=
1
∞ ∞ -->
(
− − -->
1
)
k
+
1
ζ ζ -->
(
k
+
1
)
z
k
{\displaystyle \psi ^{(0)}(z+1)=-\gamma +\sum _{k=1}^{\infty }(-1)^{k+1}\zeta (k+1)z^{k}}
which converges for |z | < 1 . Here, ζ is the Riemann zeta function . This series is easily derived from the corresponding Taylor series for the Hurwitz zeta function. This series may be used to derive a number of rational zeta series .
Asymptotic expansion
These non-converging series can be used to get quickly an approximation value with a certain numeric at-least-precision for large arguments:[ 2]
ψ ψ -->
(
m
)
(
z
)
∼ ∼ -->
(
− − -->
1
)
m
+
1
∑ ∑ -->
k
=
0
∞ ∞ -->
(
k
+
m
− − -->
1
)
!
k
!
B
k
z
k
+
m
m
≥ ≥ -->
1
{\displaystyle \psi ^{(m)}(z)\sim (-1)^{m+1}\sum _{k=0}^{\infty }{\frac {(k+m-1)!}{k!}}{\frac {B_{k}}{z^{k+m}}}\qquad m\geq 1}
and
ψ ψ -->
(
0
)
(
z
)
∼ ∼ -->
ln
-->
(
z
)
− − -->
∑ ∑ -->
k
=
1
∞ ∞ -->
B
k
k
z
k
{\displaystyle \psi ^{(0)}(z)\sim \ln(z)-\sum _{k=1}^{\infty }{\frac {B_{k}}{kz^{k}}}}
where we have chosen B 1 = 1 / 2 , i.e. the Bernoulli numbers of the second kind.
Inequalities
The hyperbolic cotangent satisfies the inequality
t
2
coth
-->
t
2
≥ ≥ -->
1
,
{\displaystyle {\frac {t}{2}}\operatorname {coth} {\frac {t}{2}}\geq 1,}
and this implies that the function
t
m
1
− − -->
e
− − -->
t
− − -->
(
t
m
− − -->
1
+
t
m
2
)
{\displaystyle {\frac {t^{m}}{1-e^{-t}}}-\left(t^{m-1}+{\frac {t^{m}}{2}}\right)}
is non-negative for all m ≥ 1 and t ≥ 0 . It follows that the Laplace transform of this function is completely monotone. By the integral representation above, we conclude that
(
− − -->
1
)
m
+
1
ψ ψ -->
(
m
)
(
x
)
− − -->
(
(
m
− − -->
1
)
!
x
m
+
m
!
2
x
m
+
1
)
{\displaystyle (-1)^{m+1}\psi ^{(m)}(x)-\left({\frac {(m-1)!}{x^{m}}}+{\frac {m!}{2x^{m+1}}}\right)}
is completely monotone. The convexity inequality et ≥ 1 + t implies that
(
t
m
− − -->
1
+
t
m
)
− − -->
t
m
1
− − -->
e
− − -->
t
{\displaystyle \left(t^{m-1}+t^{m}\right)-{\frac {t^{m}}{1-e^{-t}}}}
is non-negative for all m ≥ 1 and t ≥ 0 , so a similar Laplace transformation argument yields the complete monotonicity of
(
(
m
− − -->
1
)
!
x
m
+
m
!
x
m
+
1
)
− − -->
(
− − -->
1
)
m
+
1
ψ ψ -->
(
m
)
(
x
)
.
{\displaystyle \left({\frac {(m-1)!}{x^{m}}}+{\frac {m!}{x^{m+1}}}\right)-(-1)^{m+1}\psi ^{(m)}(x).}
Therefore, for all m ≥ 1 and x > 0 ,
(
m
− − -->
1
)
!
x
m
+
m
!
2
x
m
+
1
≤ ≤ -->
(
− − -->
1
)
m
+
1
ψ ψ -->
(
m
)
(
x
)
≤ ≤ -->
(
m
− − -->
1
)
!
x
m
+
m
!
x
m
+
1
.
{\displaystyle {\frac {(m-1)!}{x^{m}}}+{\frac {m!}{2x^{m+1}}}\leq (-1)^{m+1}\psi ^{(m)}(x)\leq {\frac {(m-1)!}{x^{m}}}+{\frac {m!}{x^{m+1}}}.}
Since both bounds are strictly positive for
x
>
0
{\displaystyle x>0}
, we have:
ln
-->
Γ Γ -->
(
x
)
{\displaystyle \ln \Gamma (x)}
is strictly convex .
For
m
=
0
{\displaystyle m=0}
, the digamma function,
ψ ψ -->
(
x
)
=
ψ ψ -->
(
0
)
(
x
)
{\displaystyle \psi (x)=\psi ^{(0)}(x)}
, is strictly monotonic increasing and strictly concave .
For
m
{\displaystyle m}
odd, the polygamma functions,
ψ ψ -->
(
1
)
,
ψ ψ -->
(
3
)
,
ψ ψ -->
(
5
)
,
… … -->
{\displaystyle \psi ^{(1)},\psi ^{(3)},\psi ^{(5)},\ldots }
, are strictly positive, strictly monotonic decreasing and strictly convex.
For
m
{\displaystyle m}
even the polygamma functions,
ψ ψ -->
(
2
)
,
ψ ψ -->
(
4
)
,
ψ ψ -->
(
6
)
,
… … -->
{\displaystyle \psi ^{(2)},\psi ^{(4)},\psi ^{(6)},\ldots }
, are strictly negative, strictly monotonic increasing and strictly concave.
This can be seen in the first plot above.
Trigamma bounds and asymptote
For the case of the trigamma function (
m
=
1
{\displaystyle m=1}
) the final inequality formula above for
x
>
0
{\displaystyle x>0}
, can be rewritten as:
x
+
1
2
x
2
≤ ≤ -->
ψ ψ -->
(
1
)
(
x
)
≤ ≤ -->
x
+
1
x
2
{\displaystyle {\frac {x+{\frac {1}{2}}}{x^{2}}}\leq \psi ^{(1)}(x)\leq {\frac {x+1}{x^{2}}}}
so that for
x
≫ ≫ -->
1
{\displaystyle x\gg 1}
:
ψ ψ -->
(
1
)
(
x
)
≈ ≈ -->
1
x
{\displaystyle \psi ^{(1)}(x)\approx {\frac {1}{x}}}
.
See also
References