Read other articles:
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Untuk pemain sepak bola, lihat Park Joo-hyun. Park Si-hyun박시현Sihyun pada tahun 2012Informasi latar belakangNama lahirPark Ju-hyunLahir29 November 1986 (umur 37)Korea SelatanGenre K-pop dance-pop electropop teen pop PekerjaanPenyanyi, Pemera...
おわせし 尾鷲市 天狗倉山から見下ろす中心市街地と尾鷲港 尾鷲市旗 尾鷲市章1954年8月4日制定[注釈 1] 国 日本地方 東海地方、近畿地方都道府県 三重県市町村コード 24209-8法人番号 3000020242098 面積 192.71km2総人口 14,955人 [編集](推計人口、2023年10月1日)人口密度 77.6人/km2隣接自治体 熊野市、北牟婁郡紀北町奈良県吉野郡上北山村市の木 ヒノキ市の花 ヤブツバキ
Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Fakih – berita · surat kabar · buku · cendekiawan · JSTOR Bagian dari seri bertopik IslamUshul fikih Sumber-sumber hukum Islam Al-Qur'an Hadis Ijmak Qiyas Istihsan Ijtihad Urf Fikih Taqlid Mazhab Bidah M...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Eastern District, Hong Kong – news · newspapers · books · scholar · JSTOR (October 2016) (Learn how and when to remove this template message) District in Hong Kong, ChinaEastern District 東區DistrictEastern DistrictNight view of the Eastern District skyline O...
Метері-Сен-КіренMétairies-Saint-Quirin Країна Франція Регіон Гранд-Ест Департамент Мозель Округ Саррбур-Шато-Сален Кантон Лоркен Код INSEE 57461 Поштові індекси 57560 Координати 48°39′12″ пн. ш. 7°02′34″ сх. д.H G O Висота 267 - 385 м.н.р.м. Площа 9,57 км² Населення 276 (01-2020[1])
Provisional IRA volunteer (1958-1994) Doherty's gravestone in Glasnevin Cemetery. Martin Doco Doherty (11 July 1958 – 21 May 1994) was a volunteer in the Provisional Irish Republican Army (IRA), who was shot dead while attempting to prevent a bombing by the Ulster Volunteer Force (UVF) at a pub in Dublin, Republic of Ireland. Doherty was the first person to be killed in the Republic of Ireland by the UVF since 1975. Background and IRA activity Doherty was born on 11 July 1958 in the Finglas...
The Murrow floating bridge di Danau Washington merupakan jembatan terpanjang kedua di dunia untuk jenis tersebut Danau Washington adalah danau alami terbesar kedua di negara bagian Washington, Amerika Serikat, setelah Danau Chelan, dan danau terbesar di King County. Terletak di antara Seattle di barat, Bellevue dan Kirkland di timur, Renton di selatan, serta Kenmore di utara, dan mengelilingi Pulau Mercer. Danau ini dialiri Sungai Sammamish di ujung utara dan Sungai Cedar di selatan, serta se...
Nastassja KinskiNastassja Kinski pada tahun 2017LahirNastassja Aglaia Nakszynski24 Januari 1961 (umur 62)Berlin, JermanKebangsaanJermanPekerjaanAktris, modelTahun aktif1975–sekarangSuami/istriIbrahim Moussa (m. 1984–1992)PasanganQuincy Jones (1992–95)Anak3Orang tuaKlaus KinskiRuth Brigitte TockiKerabatPola Kinski (saudara perempuan tiri)Nikolai Kinski (saudara laki-laki tiri) Nastassja Aglaia Kinski (lahir 24 Januari 1961)[...
此条目介紹的是一個拉丁符號。 關於一個非常相似的希臘符號,請見「Ι」。 关于与「I」標題相近或相同的条目,請見「I (消歧義)」。 I 拉丁字母 i Unicode编码 大写:U+0049小写:U+0069 字母称呼 拉丁语发音 /iː/ 英语发音 /aɪ/ 德语发音 /iː/ 法语发音 /i/ 西班牙语发音 /i/ 汉语拼音发音 /i/ 对应 相关的希腊字母 ι 相关的西里尔字母 і 相关的亚美尼亚字母 ի 相...
Ця стаття є частиною Хронології широкомасштабного російського вторгнення в Україну (2022), яка, в свою чергу, є частиною Хронології російської збройної агресії проти України (з 2014) Про події червня 2022 р. — див. Хронологія російського вторгнення в Україну (червень 2022) Зміст 1 ...
Lego theme Lego Wild WestOther namesLego WesternSub‑themesIndians, CowboysSubjectCowboys and IndiansLicensed fromThe Lego GroupAvailability1996–1997Total sets16[1] Lego Wild West (or Western and stylized as LEGO Wild West) was a Lego theme based on the Old West period of the United States. It was in production for only two years, from 1996 to 1997. Background Inspired by the Spaghetti Westerns of the 1960s and 1970s, the Wild West theme was one of the first themes to...
Bay in Sydney, New South Wales This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Cockle Bay Sydney – news · newspapers · books · scholar · JSTOR (June 2008) (Learn how and when to remove this template message) Cockle Bay Wharf Cockle Bay is a small bay in inner-city Sydney, New South Wales, Australia. It ...
Untuk kegunaan lain, lihat Gita Cinta dari SMA (disambiguasi). Gita Cinta dari SMAAlbum studio karya Sherly MalintonDirilis1980GenrePopLabelIrama TaraKronologi Sherly Malinton Merpati Malu (1980)Merpati Malu1980 Gita Cinta dari SMA (1980) Untukmu Bung Hatta (1982)Untukmu Bung Hatta1982 Gita Cinta Dari SMA adalah album tahun 1980 yang merupakan lagu-lagu soundtrack film Gita Cinta dari SMA yang dinyanyikan kembali oleh Sherly Malinton. Latar Belakang Album Kesuksesan film Gita Cinta dari S...
以色列-苏丹關係 以色列 苏丹 以色列-蘇丹關係(Israel–Sudan relations)是指以色列與蘇丹之間的外交關係。官方上說,直到2020年,兩國都沒有雙邊關係,但據以色列負責區域合作的副部長Ayoob Kara稱,兩國保持秘密關係。2020年10月23日,以色列和蘇丹首次宣佈关系正常化,使蘇丹成為繼埃及、約旦、阿拉伯聯合酋長國和巴林之後的第五個承認以色列的阿拉伯國家。[1]...
Encyclopedia on the history of Switzerland Historical Dictionary of SwitzerlandAvailable inGerman, French, Italian, RomanshOwnerSwiss Academy of Humanities and Social SciencesURLhls-dhs-dss.ch (de/fr/it)e-lir.ch (rm)RegistrationNoLaunched1998; 25 years ago (1998) The first three printed volumes, in German, French and Italian. The Historical Dictionary of Switzerland (Dictionnaire historique de la Suisse; abbr. DHS) is an encyclopedia on the history of Switzerland. It ai...
Before Manchester City Football Club moved into their first permanent home in Manchester, England, in 1887, the club played at a short series of grounds which ranged from established cricket venues to bumpy fields with no stands or boundaries nor history of sporting usage. The club was founded as a philanthropic endeavour to encourage impressionable youths to commit to wholesome activities rather than falling to the local adolescent culture of alcohol and violence. The sport of football was b...
For other people named Amy Brown, see Amy Brown (disambiguation). Amy BrownPortrait of Amy Brown by an unknown artistBorn8 April 1783Maidstone, Kent, EnglandDied7 May 1876 (aged 93)Chateau de La Contrie, FranceSpousesMr. FreemanCharles Ferdinand, Duke of BerryIssueGeorgina Emma MarshallGeorge Granville BrownJohn FreemanRobert FreemanCharlotte Marie de Bourbon, Comtesse d'IssoudunLouise Marie de Bourbon, Comtesse de VierzonFatherJohn L. BrownMotherMary Ann DeaconAmy Brown (8 April 1783 – 7 M...
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2013) (Learn how and when to remove this template message) The Most ReverendJán Babjak,S.J.Archbishop of PrešovJán Babjak in 2012ChurchSlovak Greek Catholic ChurchDioceseArcheparchy of PrešovSeePrešovIn office2003 - 2022PredecessorJán HirkaSuccessorPeter Rusnák (Apostolic Administrator)OrdersOrdin...
Questa voce o sezione sull'argomento religiosi italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Nel seguente testo sull'argomento religione è presente una sospetta violazione di copyright. Motivo: L'impostazione complessiva del testo sembra copiata da fonte cartacea È sconsigliato wikificare...
El número de Dottie es el único número punto fijo de la función coseno. En matemática, el número de Dottie es una constante que es la única raíz real de la ecuación cos x = x , {\displaystyle \cos x=x,} donde el argumento del cos {\displaystyle \cos } está expresado en radianes. La expansión decimal del número de Dottie es 0.739085... {\displaystyle 0.739085...} .[1] Se puede demostrar trivialmente que la ecuación solo tiene una solución en el dominio real median...