Peter Duncan (actor)
|
Read other articles:
Adalberto di Bremavescovo della Chiesa cattolicaL'Arcivescovo Adalberto, statua bronzea di Heinrich G. Bücker nel Museo del Duomo di Brema Incarichi ricopertiArcivescovo di Amburgo-Brema dal 1043 al 1072 Nato1000 circa Deceduto16 marzo 1072 a Goslar Manuale Adalberto (1000 circa – Goslar, 16 marzo 1072) è stato arcivescovo di Amburgo e di Brema. Figlio del conte palatino di Sassonia Federico I di Goseck, venne nominato da Enrico III nel 1043 arcivescovo di Amburgo-Brema....
БоффрBoffres Країна Франція Регіон Овернь-Рона-Альпи Департамент Ардеш Округ Турнон-сюр-Рон Кантон Верну-ан-Віваре Код INSEE 07035 Поштові індекси 07440 Координати 44°55′16″ пн. ш. 4°42′12″ сх. д.H G O Висота 375 - 848 м.н.р.м. Площа 30,10 км² Населення 610 (01-2020[1]) Густота 20,6...
Dana Dimel is the current head coach of the Miners. The UTEP Miners college football team represents University of Texas at El Paso (UTEP) in the West Division of Conference USA (CUSA). The Miners compete as part of the NCAA Division I Football Bowl Subdivision. The program has had 25 head coaches since it began play during the 1914 season. The team has played more than 950 games over 98 seasons. In that time, only eight head coaches have led the Miners to postseason bowl games and playe...
Kerk van de Heilige Michaël kan verwijzen naar: Kerk van de Heilige Michaël (Aken) Kerk van de Heilige Michael (Maršíkov) Bekijk alle artikelen waarvan de titel begint met Kerk van de Heilige Michaël of met Kerk van de Heilige Michaël in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Kerk van de Heilige Michaël inzichtelijk te maken. Op deze pagina staat een uitleg van de verschillende betekenissen van Kerk van de ...
присілок Гомонтово Гомонтово Країна Росія Суб'єкт Російської Федерації Ленінградська область Муніципальний район Волосовський район Поселення Бегуницьке сільське поселення Код ЗКАТУ: 41206000006 Код ЗКТМО: 41606404116 Основні дані Населення ▲ 79 Поштовий індекс 188423 Телефонн...
Este nombre sigue la onomástica japonesa; el apellido es Ikoma. Ikoma Chikamasa Información personalNombre en japonés 生駒親正 Nacimiento 1526 Fallecimiento 25 de marzo de 1603 Nacionalidad JaponesaFamiliaHijos Ikoma Kazumasa Información profesionalOcupación Samurái Cargos ocupados Daimyō [editar datos en Wikidata] Ikoma Chikamasa (生駒 親正, Ikoma Chikamasa? 1526 – 25 de marzo de 1603) fue un samurái y daimyō durante el período Azuchi-Momoyama hasta el peri...
Festival Film Indonesia ke-30Tanggal6 Desember 2010TempatBallroom Central Park, Jakarta BaratPembawa acara Atiqah Hasiholan Raffi Ahmad Vincent PenyelenggaraKomite Festival Film IndonesiaSorotanFilm Terbaik3 Hati Dua Dunia, Satu Cinta[1][2]Penyutradaraan TerbaikBenni Setiawan3 Hati Dua Dunia, Satu CintaAktor TerbaikReza Rahadian3 Hati Dua Dunia, Satu CintaAktris TerbaikLaura Basuki3 Hati Dua Dunia, Satu CintaPenghargaan seumur hidupTuti Indra MalaonPenghargaan terbanyak3 Hati ...
Orazio Gentileschi, Prado, 1633, salah satu dari dua versi Penemuan Musa, terkadang disebut Musa di Teberau, Musa Diangkat dari Air , atau ragam lainnya, adalah sebuah cerita dalam pasal 2 dari Kitab Keluaran dalam Alkitab Ibrani tentang penemuan bayi Musa di Sungai Nil oleh putri Firaun. Cerita tersebut menjadi subyek umum dalam seni rupa, khususnya dari zaman Renaisans. Referensi Bowers, Toni, The Politics of Motherhood: British Writing and Culture, 1680–1760, 1996, Cambridge University P...
For the 2017 film, see Get the Girl (film). 19th episode of the 8th season of The Office Get the GirlThe Office episodeEpisode no.Season 8Episode 19Directed byRainn WilsonWritten byCharlie GrandyCinematography byMatt SohnEditing byClaire ScanlonProduction code819Original air dateMarch 15, 2012 (2012-03-15)[1]Running time23 minutesGuest appearances Brad Morris as Glenn Georgia Engel as Irene Episode chronology ← PreviousLast Day in Florida Next →Welcom...
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Chelsea Classic Cinema – news · newspapers · books · scholar · JSTOR (November 2009) The Chelsea Classic Cinema was a cinema originally opened in 1913 as the Chelsea Picture Playhouse, in the King's Road, Chelsea. It was designed by Felix Joubert, the...
1979 Doctor Who serial104 – Destiny of the DaleksDoctor Who serialCastDoctor Tom Baker – Fourth Doctor Companion Lalla Ward – Romana Others David Gooderson – Davros Mike Mungarvan, Cy Town – Daleks Roy Skelton – Dalek Voices Peter Straker – Commander Sharrel Suzanne Danielle – Agella Tony Osoba – Lan Tim Barlow – Tyssan Penny Casdagli – Jall David Yip – Veldan Cassandra – Movellan Guard ProductionDirected byKen GrieveWritten byTerry NationScript editorDouglas...
Dutch sailor Mandy MulderPersonal informationFull nameMandy MulderNationalityDutchBorn (1987-08-03) 3 August 1987 (age 36)PoeldijkHeight1.70 m (5.6 ft)Sailing careerClass(es)Laser Radial470YnglingClubWatersportvereniging BraassemermeerCoachMaurice Paardekooper Competition record Representing Netherlands Olympic Games 2008 Beijing Yngling European Championships 2008 Yngling Updated on 13 February 2014. Mandy Mulder (born 3 August 1987 in Poeldijk) is a sailor from the...
29th season of top-tier Italian football Football league seasonSerie ASeason1929–30ChampionsAmbrosiana3rd titleRelegatedPadovaCremoneseMatches played306Goals scored969 (3.17 per match)Top goalscorerGiuseppe Meazza(31 goals)← 1928–29 1930–31 → The 1929–30 Serie A was the 30th football tournament in Italy. Internazionale won its third Scudetto as Ambrosiana. This was the first edition of the Serie A using a round-robin format. Serie A 1929-30 teams distribution Teams The 18 clu...
Brazilian volleyball player Thiago AlvesPersonal informationFull nameThiago Soares AlvesBorn (1986-07-26) July 26, 1986 (age 37)Porto Alegre, Rio Grande do Sul, BrazilHeight1.96 m (6 ft 5 in)Volleyball informationPositionOutside spikerCurrent clubMontes Claros VôleiNumber17Career YearsTeams 2000–2003 Grêmio Náutico União2003–2004 Bento Gonçalves2004–2005 On Line Novo Hamburgo2006–2007 Unisul/Florianópolis2007–2009 Cimed/Florianópolis2009–2010 Cimed ...
Settimana Coppi e BartaliSettimana Internazionale di Coppi e Bartali (en italiano) Ciclismo en rutaDatos generalesPaís Italia ItaliaCategoría UCI Europe Tour2.1 (2005-)Fecha MarzoCreación 1984Edición 38.ª (a 2023)Organizador Gruppo Sportivo EmiliaFormato Carrera por etapas (2000-)Equipos participantes UCI WorldTeam UCI ProTeam Continental PalmarésMás victorias Moreno Argentin (2)Ganador actual Mauro Schmid (2023)Sitio oficial [editar datos en Wikidata] La Settimana Coppi...
Логотип змаганьВсесвітні ігри військовослужбовців (англ. Military World Games) — мультиспортивні змагання, які організовуються для спортсменів-військовослужбовців. Організатором змагань є Міжнародна рада військового спорту. Українська команда з військового п'ятиборства, у...
VanglainiVanglainiTypeDaily newspaperFormatBroadsheetOwner(s)K. SapdangaFounded1978LanguageMizoHeadquartersAizawl, IndiaCirculation45,000Websitewww.vanglaini.org Vanglaini is a daily newspaper in Mizoram, northeast India, published in the Mizo language.[1] It is registered with the Registrar of Newspapers for India (no. RNI 34227/79. : MZR/67/2012-2014). It is owned, edited, and published by K. Sapdanga. It remains the newspaper in Mizoram with the largest circulation.[2]...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2018) ثلاث حسناوات من العصر الحديث Japanese: 当時三美人Tōji San Bijin معلومات فنية الفنان كيتاغاوا أتامارو تاريخ إنشاء العمل ق. 1793 (ق. 1793) نوع العمل Nishiki-e colour woodblock print الموض...
Place in Styria, SloveniaMočnaMočnaLocation in SloveniaCoordinates: 46°34′29.34″N 15°45′34.97″E / 46.5748167°N 15.7597139°E / 46.5748167; 15.7597139Country SloveniaTraditional regionStyriaStatistical regionDravaMunicipalityLenartArea • Total2.3 km2 (0.9 sq mi)Elevation264 m (866 ft)Population (2002) • Total242[1] Močna (pronounced [ˈmoːtʃna]) is a settlement in the Municipality of L...
「无限」重定向至此。关于其他用法,请见「无限 (消歧义)」。 各种各样的数 基本 N ⊆ Z ⊆ Q ⊆ R ⊆ C {\displaystyle \mathbb {N} \subseteq \mathbb {Z} \subseteq \mathbb {Q} \subseteq \mathbb {R} \subseteq \mathbb {C} } 正數 R + {\displaystyle \mathbb {R} ^{+}} 自然数 N {\displaystyle \mathbb {N} } 正整數 Z + {\displaystyle \mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {\displaystyle...