Peroxisomes (microbodies) were first described by a Swedish doctoral student, J. Rhodin in 1954.[8] They were identified as organelles by Christian de Duve and Pierre Baudhuin in 1966.[9] De Duve and co-workers discovered that peroxisomes contain several oxidases involved in the production of hydrogen peroxide (H2O2) as well as catalase involved in the decomposition of H2O2 to oxygen and water.[10] Due to their role in peroxide metabolism, De Duve named them “peroxisomes”, replacing the formerly used morphological term “microbodies”. Later, it was described that firefly luciferase is targeted to peroxisomes in mammalian cells, allowing the discovery of the import targeting signal for peroxisomes, and triggering many advances in the peroxisome biogenesis field.[11][12]
Structure
Peroxisomes are small (0.1–1 μm diameter) subcellular compartments (organelles) with a fine, granular matrix and surrounded by a single biomembrane which are located in the cytoplasm of a cell.[13][14] Compartmentalization creates an optimized environment to promote various metabolic reactions within peroxisomes required to sustain cellular functions and viability of the organism.
The number, size and protein composition of peroxisomes are variable and depend on cell type and environmental conditions. For example, in baker's yeast (S. cerevisiae), it has been observed that, with good glucose supply, only a few, small peroxisomes are present. In contrast, when the yeasts were supplied with long-chain fatty acids as sole carbon source up to 20 to 25 large peroxisomes can be formed.[15]
Metabolic functions
A major function of the peroxisome is the breakdown of very long chain fatty acids through beta oxidation. In animal cells, the long fatty acids are converted to medium chain fatty acids, which are subsequently shuttled to mitochondria where they eventually are broken down to carbon dioxide and water. In yeast and plant cells, this process is carried out exclusively in peroxisomes.[16][17]
The first reactions in the formation of plasmalogen in animal cells also occur in peroxisomes. Plasmalogen is the most abundant phospholipid in myelin. Deficiency of plasmalogens causes profound abnormalities in the myelination of nerve cells, which is one reason why many peroxisomal disorders affect the nervous system.[16] Peroxisomes also play a role in the production of bile acids important for the absorption of fats and fat-soluble vitamins, such as vitamins A and K. Skin disorders are features of genetic disorders affecting peroxisome function as a result.[17]
The specific metabolic pathways that occur exclusively in mammalian peroxisomes are:[5]
β-oxidation of very-long-chain and polyunsaturated fatty acids
biosynthesis of plasmalogens
conjugation of cholic acid as part of bile acid synthesis
Peroxisomes contain oxidative enzymes, such as D-amino acid oxidase and uric acid oxidase.[18] However the last enzyme is absent in humans, explaining the disease known as gout, caused by the accumulation of uric acid. Certain enzymes within the peroxisome, by using molecular oxygen, remove hydrogen atoms from specific organic substrates (labeled as R), in an oxidative reaction, producing hydrogen peroxide (H2O2, itself toxic):
Catalase, another peroxisomal enzyme, uses this H2O2 to oxidize other substrates, including phenols, formic acid, formaldehyde, and alcohol, by means of the peroxidation reaction:
, thus eliminating the poisonous hydrogen peroxide in the process.
This reaction is important in liver and kidney cells, where the peroxisomes detoxify various toxic substances that enter the blood. About 25% of the ethanol that humans consume by drinking alcoholic beverages is oxidized to acetaldehyde in this way.[16] In addition, when excess H2O2 accumulates in the cell, catalase converts it to H2O through this reaction:
In higher plants, peroxisomes contain also a complex battery of antioxidative enzymes such as superoxide dismutase, the components of the ascorbate-glutathione cycle, and the NADP-dehydrogenases of the pentose-phosphate pathway. It has been demonstrated that peroxisomes generate superoxide (O2•−) and nitric oxide (•NO) radicals.[19][20]
There is evidence now that those reactive oxygen species including peroxisomal H2O2 are also important signalling molecules in plants and animals and contribute to healthy ageing and age-related disorders in humans.[21]
The peroxisome of plant cells is polarised when fighting fungal penetration. Infection causes a glucosinolate molecule to play an antifungal role to be made and delivered to the outside of the cell through the action of the peroxisomal proteins (PEN2 and PEN3).[22]
Peroxisomes in mammals and humans also contribute to anti-viral defense.[23] and the combat of pathogens [24]
Peroxisome assembly
Peroxisomes are derived from the smooth endoplasmic reticulum under certain experimental conditions and replicate by membrane growth and division out of pre-existing organelles.[25][26][27] Peroxisome matrix proteins are translated in the cytoplasm prior to import. Specific amino acid sequences (PTS or peroxisomal targeting signal) at the C-terminus (PTS1) or N-terminus (PTS2) of peroxisomal matrix proteins signals them to be imported into the organelle by a targeting factor. There are currently 36 known proteins involved in peroxisome biogenesis and maintenance, called peroxins,[28] which participate in the process of peroxisome assembly in different organisms. In mammalian cells there are 13 characterized peroxins. In contrast to protein import into the endoplasmic reticulum (ER) or mitochondria, proteins do not need to be unfolded to be imported into the peroxisome lumen. The matrix protein import receptors, the peroxins PEX5 and PEX7, accompany their cargoes (containing a PTS1 or a PTS2 amino acid sequence, respectively) all the way to the peroxisome where they release the cargo into the peroxisomal matrix and then return to the cytosol – a step named recycling. A special way of peroxisomal protein targeting is called piggy backing. Proteins that are transported by this unique method do not have a canonical PTS, but rather bind on a PTS protein to be transported as a complex.[29] A model describing the import cycle is referred to as the extended shuttle mechanism.[30] There is now evidence that ATP hydrolysis is required for the recycling of receptors to the cytosol. Also, ubiquitination is crucial for the export of PEX5 from the peroxisome to the cytosol. The biogenesis of the peroxisomal membrane and the insertion of peroxisomal membrane proteins (PMPs) requires the peroxins PEX19, PEX3, and PEX16. PEX19 is a PMP receptor and chaperone, which binds the PMPs and routes them to the peroxisomal membrane, where it interacts with PEX3, a peroxisomal integral membrane protein. PMPs are then inserted into the peroxisomal membrane.
The degradation of peroxisomes is called pexophagy.[31]
Peroxisome interaction and communication
The diverse functions of peroxisomes require dynamic interactions and cooperation with many organelles involved in cellular lipid metabolism such as the endoplasmic reticulum, mitochondria, lipid droplets, and lysosomes.[32]
Peroxisomes interact with mitochondria in several metabolic pathways, including β-oxidation of fatty acids and the metabolism of reactive oxygen species.[5] Both organelles are in close contact with the endoplasmic reticulum and share several proteins, including organelle fission factors.[33] Peroxisomes also interact with the endoplasmic reticulum and cooperate in the synthesis of ether lipids (plasmalogens), which are important for nerve cells (see above). In filamentous fungi, peroxisomes move on microtubules by 'hitchhiking,' a process involving contact with rapidly moving early endosomes.[34] Physical contact between organelles is often mediated by membrane contact sites, where membranes of two organelles are physically tethered to enable rapid transfer of small molecules, enable organelle communication and are crucial for coordination of cellular functions and hence human health.[35] Alterations of membrane contacts have been observed in various diseases.
PEX genes encode the protein machinery (peroxins) required for proper peroxisome assembly. Peroxisomal membrane proteins are imported through at least two routes, one of which depends on interaction between peroxin 19 and peroxin 3, while the other is required for import of peroxin 3, either of which may occur without the import of matrix (lumen) enzymes, which possess the peroxisomal targeting signal PTS1 or PTS2 as previously discussed.[38] Elongation of the peroxisome membrane and the final fission of the organelle are regulated by Pex11p.[39]
The protein content of peroxisomes varies across species or organism, but the presence of proteins common to many species has been used to suggest an endosymbiotic origin; that is, peroxisomes evolved from bacteria that invaded larger cells as parasites, and very gradually evolved a symbiotic relationship.[42] However, this view has been challenged by recent discoveries.[43] For example, peroxisome-less mutants can restore peroxisomes upon introduction of the wild-type gene.
Two independent evolutionary analyses of the peroxisomal proteome found homologies between the peroxisomal import machinery and the ERAD pathway in the endoplasmic reticulum,[44][45] along with a number of metabolic enzymes that were likely recruited from the mitochondria.[45] The peroxisome may have had an Actinomycetota origin;[46] however, this is controversial.[47]
^Bonekamp NA, Völkl A, Fahimi HD, Schrader M (2009). "Reactive oxygen species and peroxisomes: struggling for balance". BioFactors. 35 (4): 346–55. doi:10.1002/biof.48. PMID19459143. S2CID7502822.
^Evert RF, Eichhorn SE (2006). Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. John Wiley & Sons. ISBN9780471738435.
^Rhodin, J (1954). "Correlation of ultrastructural organization and function in normal and experimentally changed proximal tubule cells of the mouse kidney". Doctorate Thesis. Karolinska Institutet, Stockholm.
^de Duve, Christian; Baudhuin, Pierre (1966). "Peroxisomes (microbodies and related particles)". Physiological Reviews. 46 (2): 323–357. doi:10.1152/physrev.1966.46.2.323.
^del Río LA, Sandalio LM, Palma JM, Bueno P, Corpas FJ (November 1992). "Metabolism of oxygen radicals in peroxisomes and cellular implications". Free Radical Biology & Medicine. 13 (5): 557–80. doi:10.1016/0891-5849(92)90150-F. PMID1334030.
^Corpas FJ, Barroso JB, del Río LA (April 2001). "Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells". Trends in Plant Science. 6 (4): 145–50. doi:10.1016/S1360-1385(01)01898-2. PMID11286918.
^Fagarasanu A, Fagarasanu M, Rachubinski RA (2007). "Maintaining peroxisome populations: a story of division and inheritance". Annual Review of Cell and Developmental Biology. 23: 321–44. doi:10.1146/annurev.cellbio.23.090506.123456. PMID17506702.
^Duhita N, Le HA, Satoshi S, Kazuo H, Daisuke M, Takao S (January 2010). "The origin of peroxisomes: The possibility of an actinobacterial symbiosis". Gene. 450 (1–2): 18–24. doi:10.1016/j.gene.2009.09.014. PMID19818387.
^Gabaldón T, Capella-Gutiérrez S (October 2010). "Lack of phylogenetic support for a supposed actinobacterial origin of peroxisomes". Gene. 465 (1–2): 61–5. doi:10.1016/j.gene.2010.06.004. PMID20600706.
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) تشاد فيرتشايلد معلومات شخصية الميلاد 30 ديسمبر 1970 (53 سنة) ساندوسكي، أوهايو مواطنة الولايات المتحدة الحياة العملية المهنة حكم كرة قاعدة [لغا
Ancient Akkadian region in Mesopotamia This article is about the ancient (pre-539 BC) empires. For the region called Babylonia by Jewish sources in the later, Talmudic period, see Talmudic academies in Babylonia. For other uses, see Babylonia (disambiguation). This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2013) (Learn how and when to remove this templat...
Правочин, щодо якого є зацікавленість — правочин, який укладається між акціонерним товариством і його інсайдером (афілійованою особою) або третьою особою, за умови, що інсайдер акціонерного товариства або його афілійована особа має зацікавленість щодо цього правочи...
53.01757.5241666666667Koordinaten: 53° 1′ 3″ N, 7° 31′ 27″ OKZ Börgermoor Das KZ Börgermoor bei der heutigen Gemeinde Surwold, Ortsteil Börgermoor, war eines der ersten Konzentrationslager, geplant für zunächst 1.000 „Schutzhäftlinge“. Im Juni 1933 wurde es mit den ersten Häftlingen belegt.[1] Es ist eines der Emslandlager, die von den Nationalsozialisten errichtet wurden. Ab April 1934 war es ein Strafgefangenenlager des Reich...
село Переможець Країна Україна Область Київська область Район Броварський Громада Броварська міська громада Код КАТОТТГ UA32060050030054099 Основні дані Засноване 1922 Населення 45 Площа 0,33 км² Поштовий індекс 07454 Телефонний код +380 4594 Географічні дані Географічні координат...
Peter Albert (* 17. Dezember 1946 in Erfurt; † 30. Dezember 2001 in Berlin) war ein deutscher Schlagersänger, Komponist und Texter. Inhaltsverzeichnis 1 Leben 2 Diskografie 2.1 Alben 2.2 Singles 2.3 Veröffentlichungen auf Samplern 3 Weblinks 4 Einzelnachweise Leben Grabstätte Nachdem Albert 1963 in Erfurt nach der 10. Klasse seinen Schulabschluss an der POS erworben hatte, begann er eine Ausbildung zum Großhandelskaufmann. Von 1964 bis 1969 erlernte er an der Musikschule Erfurt das Gita...
جهاز عصبي ودي الاسم العلميSympathetic Nervous System مخطط يوضح الجهاز العصبي الودي والحبل الودي والأعضاء التي يصلها تفاصيل نوع من جهاز عصبي، وكيان تشريحي معين [لغات أخرى] جزء من جهاز عصبي ذاتي ترمينولوجيا أناتوميكا 14.3.01.001 FMA 9906 UBERON ID 0000013 ن.ف.م.ط. [1] ن.ف.م.ط. D01...
تنصير بلغاريا البلد بلغاريا تعديل مصدري - تعديل تنصير بلغاريا (بالإنجليزية: Christianisation of Bulgaria) هي عملية تحول بلغاريا إلى المسيحية في القرون الوسطى في القرن التاسع الميلادي. عكست تلك العملية الحاجة إلى الوحدة داخل الدولة البلغارية المنقسمة دينيًا، فضلًا عن الحاجة إلى
Coordenadas: 38° 56′ 00 N, 77° 00′ 02 W Basílica do Santuário Nacional da Imaculada Conceição Basílica do Santuário Nacional da Imaculada ConceiçãoParte leste da Basílica do Santuário Nacional. Estilo dominante Neo-românico Arquiteto Maginnis & Walsh Construção 1920-1959 Diocese Arquidiocese de Washington Geografia País Estados Unidos Local Avenida Michigan, 400, NE Distrito de Colúmbia Estados Unidos Coordenadas 38° 56' N 77° 0' 02 O A Basíli...
Lenong BocahPoster Serial Komedi Lenong BocahGenre Drama Komedi SutradaraAditya GumayPresenter Kak Ria Enes & Suzan Debby Sahertian Pemeran Okky Lukman Olga Syahputra Ruben Onsu Lia Waode Rafi Cinoun Chika Waode Mellissa Grace Indra Bekti Noval Kurnia Diva Nadia Lagu pembukaNonton LenongLagu penutupNonton LenongNegara asalIndonesiaBahasa asli Indonesia Betawi Jmlh. musim2Jmlh. episode300ProduksiLokasi produksiStudio TPI Pondok Gede, Jakarta TimurRilisJaringan asliTPIRilis asli26 Februari ...
Social status and privilege as a grammatical function in many languages This article is about systems of honorific speech in linguistics, which affect languages' word choice or grammar. For titles indicating honor or status (honorific titles), see Honorific. Grammatical features Related to nouns Animacy Case Dative construction Dative shift Quirky subject Classifier Measure word Construct state Countability Count noun Mass noun Collective noun Definiteness Gender Genitive construction Possess...
Constituency of the Jharkhand legislative assembly in India HatiaConstituency No. 64 for the Jharkhand Legislative AssemblyConstituency detailsCountryIndiaRegionEast IndiaStateJharkhandDistrictRanchiLS constituencyRanchiTotal electors448,166Member of Legislative Assembly5th Jharkhand Legislative AssemblyIncumbent Navin Jaiswal Elected year2019 Hatia is an assembly constituency in the Indian state of Jharkhand.[1] Members of the Legislative Assembly 2005: Gopal Sharan Nath Shahdeo, Ind...
2011 novel by Elena Ferrante For the television adaptation, see My Brilliant Friend (TV series). My Brilliant Friend First edition coverAuthorElena FerranteOriginal titleL'amica genialeTranslatorAnn GoldsteinLanguageItalianPublication date2011Published in English2012ISBN9781609450786Followed byThe Story of a New Name, Those Who Leave and Those Who Stay, The Story of the Lost Child My Brilliant Friend (Italian: L'amica geniale) is the first volume of a four-part series of ...
Luxury British boat train This article is about the British train. For the French train, see La Flèche d'Or. For the overnight sleeper service, see Night Ferry. The 'Golden Arrow' leaving Victoria Station, London, in 1953 The Golden Arrow (French: Flèche d’Or) was a luxury boat train of the Southern Railway and later British Railways. It linked London with Dover, where passengers took the ferry to Calais to join the Flèche d’Or of the Chemin de Fer du Nord and later SNCF which took the...
Painting by Edvard Munch You can help expand this article with text translated from the corresponding article in German. (December 2016) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated te...