Pépin's test

In mathematics, Pépin's test is a primality test, which can be used to determine whether a Fermat number is prime. It is a variant of Proth's test. The test is named after a French mathematician, Théophile Pépin.

Description of the test

Let be the nth Fermat number. Pépin's test states that for n > 0,

is prime if and only if

The expression can be evaluated modulo by repeated squaring. This makes the test a fast polynomial-time algorithm. However, Fermat numbers grow so rapidly that only a handful of Fermat numbers can be tested in a reasonable amount of time and space.

Other bases may be used in place of 3. These bases are:

3, 5, 6, 7, 10, 12, 14, 20, 24, 27, 28, 39, 40, 41, 45, 48, 51, 54, 56, 63, 65, 75, 78, 80, 82, 85, 90, 91, 96, 102, 105, 108, 112, 119, 125, 126, 130, 147, 150, 156, 160, ... (sequence A129802 in the OEIS).

The primes in the above sequence are called Elite primes, they are:

3, 5, 7, 41, 15361, 23041, 26881, 61441, 87041, 163841, 544001, 604801, 6684673, 14172161, 159318017, 446960641, 1151139841, 3208642561, 38126223361, 108905103361, 171727482881, 318093312001, 443069456129, 912680550401, ... (sequence A102742 in the OEIS)

For integer b > 1, base b may be used if and only if only a finite number of Fermat numbers Fn satisfies that , where is the Jacobi symbol.

In fact, Pépin's test is the same as the Euler-Jacobi test for Fermat numbers, since the Jacobi symbol is −1, i.e. there are no Fermat numbers which are Euler-Jacobi pseudoprimes to these bases listed above.

Proof of correctness

Sufficiency: assume that the congruence

holds. Then , thus the multiplicative order of 3 modulo divides , which is a power of two. On the other hand, the order does not divide , and therefore it must be equal to . In particular, there are at least numbers below coprime to , and this can happen only if is prime.

Necessity: assume that is prime. By Euler's criterion,

,

where is the Legendre symbol. By repeated squaring, we find that , thus , and . As , we conclude from the law of quadratic reciprocity.

Historical Pépin tests

Because of the sparsity of the Fermat numbers, the Pépin test has only been run eight times (on Fermat numbers whose primality statuses were not already known).[1][2][3] Mayer, Papadopoulos and Crandall speculate that in fact, because of the size of the still undetermined Fermat numbers, it will take considerable advances in technology before any more Pépin tests can be run in a reasonable amount of time.[4]

Year Provers Fermat number Pépin test result Factor found later?
1905 Morehead & Western composite Yes (1970)
1909 Morehead & Western composite Yes (1980)
1952 Robinson composite Yes (1953)
1960 Paxson composite Yes (1974)
1961 Selfridge & Hurwitz composite Yes (2010)
1987 Buell & Young composite No
1993 Crandall, Doenias, Norrie & Young composite Yes (2010)
1999 Mayer, Papadopoulos & Crandall composite No

Notes

  1. ^ Conjecture 4. Fermat primes are finite - Pepin tests story, according to Leonid Durman
  2. ^ Wilfrid Keller: Fermat factoring status
  3. ^ R. M. Robinson (1954): Mersenne and Fermat numbers, doi:10.2307/2031878
  4. ^ Richard E. Crandall, Ernst W. Mayer & Jason S. Papadopoulos (2003): The twenty-fourth Fermat number is composite, doi:10.1090/S0025-5718-02-01479-5

References

  • P. Pépin, Sur la formule , Comptes rendus de l'Académie des Sciences de Paris 85 (1877), pp. 329–333.

Read other articles:

Species of shark Eastern banded catshark Atelomycterus marnkalha Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Chondrichthyes Order: Carcharhiniformes Family: Scyliorhinidae Genus: Atelomycterus Species: A. marnkalha Binomial name Atelomycterus marnkalhaJacobsen & Bennett, 2007 The eastern banded catshark (Atelomycterus marnkalha) is a species of catshark, and part of the family Scyliorhinidae. It is found along the northeastern coast of Austra...

 

Harry Potter and the Deathly HallowsDirected byDavid YatesScreenplay bySteve KlovesBased onHarry Potter and the Deathly Hallowsby J. K. RowlingProduced by David Heyman David Barron J. K. Rowling Starring Daniel Radcliffe Rupert Grint Emma Watson Helena Bonham Carter Robbie Coltrane Warwick Davis Ralph Fiennes Michael Gambon Brendan Gleeson Richard Griffiths John Hurt Rhys Ifans Jason Isaacs Gary Oldman Alan Rickman Fiona Shaw Maggie Smith Timothy Spall Imelda Staunton David Thewlis Julie Walt...

 

1972 studio album by Timmy ThomasWhy Can't We Live TogetherStudio album by Timmy ThomasReleased1972RecordedAugust and November 1972, MiamiGenre Soul funk Length36:56LabelGlades RecordsProducer Timmy Thomas Steve Alaimo Timmy Thomas chronology Why Can't We Live Together(1972) You're the Song I've Always Wanted to Sing(1974) Why Can't We Live Together is the debut album by Timmy Thomas released in 1972. It was historically the first record to fully replace drummers with a drum machine. ...

Kepuh Kepuh, Sterculia foetidamenurut Blanco Klasifikasi ilmiah Kerajaan: Plantae Divisi: Magnoliophyta Kelas: Magnoliopsida Ordo: Malvales Famili: Malvaceae Genus: Sterculia Spesies: S. foetida Nama binomial Sterculia foetidaL.[1] Sinonim Clompanus foetida Kuntze Sterculia mexicana var. guianensis Sagot Kepuh atau kelumpang (Sterculia foetida) adalah sejenis pohon kerabat jauh kapuk randu. Tinggi dengan batang besar menjulang, pohon ini kerap didapati di hutan-hutan pantai. Di B...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Novembro de 2015) Boeing 80 Boeing 80Boeing Model 80[1] Descrição Tipo / Missão Avião comercial País de origem  Estados Unidos Fabricante Boeing Período de produção 16 produzidos Custo unitário US$ 75.000,00 (Model 80A) Prime...

 

コロンビア大学国際公共政策大学院種別 私学大学院設立年 1946年学部長 メリット・ジェイノー所在地 アメリカニューヨーク州ニューヨーク市キャンパス 都市型公式サイト sipa.columbia.eduテンプレートを表示コロンビア大学国際公共政策大学院(英: School of International and Public Affairs; SIPA) は、1946年に設立されたコロンビア大学の大学院で、米国ニューヨーク市マンハッタ

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) داني فوستر معلومات شخصية الميلاد 3 مايو 1979 (44 سنة)  حي هكني في لندن  مواطنة المملكة المتحدة  الحياة العملية المهنة مغني  اللغات الإنجليزية  المواق...

 

Perkiraan Agama di Asia (2021)[1]   Islam (26.0%)  Hindu (25.7%)  Tidak Beragama (20%)  Buddhisme (11.3%)  Kekristenan (7.2%)  Tradisional/Lainnya (9.8%) Agama di Asia sangat beragam karena benua Asia merupakan benua terbesar dan terpadat di dunia. Asia menjadi tempat kelahiran beberapa agama yaitu: Buddha, Hindu, Kristen, Islam, kepercayaan-kepercayaan Tradisional seperti: Kepercayaan Tradisional Tionghoa (Konfusianisme/Kong...

 

Kesultanan Sulu Darul Islamسلطنة سولو دار الإسلام1457–1917 Bendera (abad ke-19) Lambang Kesultanan Sulu pada tahun 1822StatusVassal Brunei (1405–1578)Negara pembayar upeti Dinasti Ming (1417–1424)Negara berdaulat (1578–1726, 1733–1851)Negara pembayar upeti Dinasti Qing (1726–1733)Protektorat Spanyol (1851–1898)Protektorat Amerika Serikat (1903–1915)Ibu kotaBuansa(1405–1878)Maimbung(1878–1893)Palawan(1893–1915)Bahasa yang umum digunakanTausug, Arab...

Der Bakuer Kriegsgefangenenfriedhof im März 2019 Der deutsche Kriegsgefangenenfriedhof, auch „Deutscher Soldatenfriedhof“ genannt, ist ein Friedhof der deutschen Kriegsgefangenen im Stadtteil Yasamal von Baku. Auf dem Friedhof befinden sich 90 Gräber. Auf dem Friedhofsgelände befindet sich auch ein Denkmal in Form eines schwarzen Kreuzes. Geschichte Laut Tair Behbudov, einem Historiker, der das Schicksal der in Aserbaidschan angekommenen deutschen Kriegsgefangenen untersucht, kamen etw...

 

Women's doublesTennis at the 2016 Summer OlympicsFinalChampions Ekaterina Makarova Elena VesninaRunners-up Timea Bacsinszky Martina HingisScore6–4, 6–4Events Singles men women Doubles men women mixed Qualification ← 2012 · Summer Olympics · 2020 → 2016 tennis event results Women's doubles tennisat the Games of the XXXI OlympiadVenueOlympic Tennis CentreDate6–14 August 2016Competitors32 teams from 22 nationsMedalists Ekaterina MakarovaElena Ves...

 

Overview of telecommunications in the People's Republic of China For Hong Kong, see Communications in Hong Kong. For Macau, see Telecommunications in Macau. For Republic of China, see Telecommunications in Taiwan. This article needs to be updated. Please help update this article to reflect recent events or newly available information. (May 2021) The People's Republic of China possesses a diversified communications system that links all parts of the country by Internet, telephone, telegraph, r...

Pour les articles homonymes, voir Taken. Cet article est une ébauche concernant un film français. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les conventions filmographiques. Taken Données clés Titre québécois L'Enlèvement Nombre de films 3 Premier opus Taken (2008) Dernier opus Taken 3 (2015) Données clés Sociétés de production EuropaCorp Pays d'origine France Genre Action, thriller Thème(s) Enlèvement, vengeance Pour plus de détails, voir F...

 

American policy advisor For the musician, see Salman Ahmad. Salman AhmedDirector of Policy PlanningIncumbentAssumed office January 20, 2021PresidentJoe BidenPreceded byPeter Berkowitz Personal detailsEducationNew York University (BS)University of Cambridge (MPhil) Salman Ahmed is an American national security and foreign policy advisor serving as the director of policy planning in the Biden administration. Education Ahmed earned a Bachelor of Science in economics from New York University...

 

Oldest known Kadamba Kannada inscription This article contains Indic text. Without proper rendering support, you may see question marks or boxes, misplaced vowels or missing conjuncts instead of Indic text. A replica of the original Halmidi inscription at Halmidi village The Halmidi inscription is the oldest known Kannada-language inscription in the Kadamba script. While estimates vary slightly, the inscription is often dated to between 450 CE - 500 CE. The inscription was discovered in 1...

Maltese/Australian professional rugby league footballer Jake MamoPersonal informationFull nameJacob MamoBorn (1994-06-06) 6 June 1994 (age 29)Gosford, New South Wales, AustraliaPlaying informationHeight5 ft 10 in (1.78 m)Weight13 st 5 lb (85 kg)[1]PositionCentre, Fullback, Wing Club Years Team Pld T G FG P 2014–16 Newcastle Knights 29 11 0 0 44 2017–18 Huddersfield Giants 25 17 0 0 68 2019–21 Warrington Wolves 56 29 0 0 116 2020(DR...

 

Japanese financial services company Japan Finance CorporationNative name日本政策金融公庫TypeState owned KKFounded1 October 2008; 15 years ago (2008-10-01)[1]HeadquartersTokyo, JapanArea servedWorldwideKey peopleKoichi Hosokawa Governor and CEORevenue¥ 788.3 Billion (2014)Net income¥ -35.9 Billion (2014)Total assets¥ 24,653 Billion (2014)Total equity¥ 4,507 Billion (2014)Number of employees7,364 (2014)Websitehttp://www.jfc.go.jp/ Japan Finance Corporation ...

 

Road junction in Glasgow, Scotland, UK Charing CrossCharing Cross Mansions, one of the city's oldest and grandest red sandstone tenements, built in 1891LocationGlasgow, ScotlandCoordinates55°52′01″N 4°16′16″W / 55.86685°N 4.27113°W / 55.86685; -4.27113Roads atjunction M8 A804 Sauchiehall Street Woodlands Road ConstructionMaintained byGlasgow City Council Charing Cross is a major road junction and area within the centre of Glasgow, Scotland. It is situated n...

2001 compilation album by Bret MichaelsBallads, Blues & StoriesCompilation album by Bret MichaelsReleasedAugust 8, 2001[1]GenreRock, blues rockLabelPoor Boy RecordsBret Michaels chronology Country Demos(2000) Ballads, Blues & Stories(2001) Songs of Life(2003) Ballads, Blues & Stories is a unique storytellers music CD from Bret Michaels, the lead singer of the rock band Poison. Released in 2001 it consists of Bret Michaels' solo music and Poison songs, with a record...

 

Literary genre of fiction that peaked in Great Britain in the 1860s-70s For the theatrical work by W. S. Gilbert and Thomas German Reed, see A Sensation Novel. The sensation novel, also sensation fiction, was a literary genre of fiction that achieved peak popularity in Great Britain in the 1860s and 1870s.[1] Its literary forebears included the melodramatic novels and the Newgate novels, which focused on tales woven around criminal biographies; it also drew on the Gothic, romance, as ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!