Oxetane, or 1,3-propylene oxide, is a heterocyclicorganic compound with the molecular formula C 3H 6O, having a four-membered ring with three carbon atoms and one oxygen atom.
The term "an oxetane" or "oxetanes" refer to any organic compound containing the oxetane ring.
Yield of oxetane made this way is c. 40%, as the synthesis can lead to a variety of by-products including water, potassium chloride, and potassium acetate.
More than a hundred different oxetanes have been synthesized.[citation needed] Functional groups can be added into any desired position in the oxetane ring, including fully fluorinated (perfluorinated) and fully deuterated analogues. Major examples are:
Paclitaxel (Taxol) is an example of a natural product containing an oxetane ring. Taxol has become a major point of interest among researchers due to its unusual structure and success in the involvement of cancer treatment.[8] The attached oxetane ring is an important feature that is used for the binding of microtubules in structure activity; however little is known about how the reaction is catalyzed in nature, which creates a challenge for scientists trying to synthesize the product.[8]
Reactions
Oxetanes are less reactive than epoxides, and generally unreactive in basic conditions,[9] although Grignard reagents at elevated temperatures[10] and complex hydrides will cleave them.[11] However, the ring strain does make them much more reactive than larger rings,[12] and oxetanes decompose in the presence of even mildly acidic nucleophiles.[13] In non-nucleophilic acids, they mainly isomerize to allyl alcohols.[14]
In industry, the parent compound, oxetane polymerizes to polyoxetane in the presence of a dry acid catalyst,[16] although the compound was described in 1967 as "rarely polymerized commercially".[17]
^ abWillenbring, Dan; Tantillo, Dean J. (April 2008). "Mechanistic possibilities for oxetane formation in the biosynthesis of Taxol's D ring". Russian Journal of General Chemistry. 78 (4): 723–731. doi:10.1134/S1070363208040336. S2CID98056619.
^Patai, Saul, ed. (1967). The Chemistry of the Ether Linkage. The Chemistry of Functional Groups. London: Interscience / William Clowes and Sons. pp. 28–30. LCCN66-30401.
^Penczek & Penczek (1963), "Kinetics and mechanism of heterogeneous polymerization of 3,3-bis(chloromethyl)oxetane catalyzed by gaseous BF3" in Die Makromolekuläre Chemie. Wiley.