You can help expand this article with text translated from the corresponding article in Russian. (May 2012) Click [show] for important translation instructions.
Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia.
Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is Content in this edit is translated from the existing Russian Wikipedia article at [[:ru:Наружное ухо]]; see its history for attribution.
You may also add the template {{Translated|ru|Наружное ухо}} to the talk page.
The outer ear, external ear, or auris externa is the external part of the ear, which consists of the auricle (also pinna) and the ear canal.[1] It gathers sound energy and focuses it on the eardrum (tympanic membrane).
The visible part is called the auricle, also known as the pinna, especially in other animals. It is composed of a thin plate of yellow elastic cartilage, covered with integument, and connected to the surrounding parts by ligaments and muscles; and to the commencement of the ear canal by fibrous tissue. Many mammals can move the pinna (with the auriculares muscles) in order to focus their hearing in a certain direction in much the same way that they can turn their eyes. Most humans do not have this ability.[2]
From the pinna, the sound waves move into the ear canal (also known as the external acoustic meatus) a simple tube running through to the middle ear. This tube leads inward from the bottom of the auricula and conducts the vibrations to the tympanic cavity and amplifies frequencies in the range 2 kHz to 5 kHz.[3]
The helicis major is a narrow vertical band situated upon the anterior margin of the helix. It arises below, from the spina helicis, and is inserted into the anterior border of the helix, just where it is about to curve backward.
The transverse muscle is placed on the cranial surface of the pinna. It consists of scattered fibers, partly tendinous and partly muscular, extending from the eminentia conchae to the prominence corresponding with the scapha.
The oblique muscle also on the cranial surface, consists of a few fibers extending from the upper and back part of the concha to the convexity immediately above it.
The intrinsic muscles contribute to the topography of the auricle, while also function as a sphincter of the external auditory meatus. It has been suggested that during prenatal development in the womb, these muscles exert forces on the cartilage which in turn affects the shaping of the ear.[4]
The superior muscle is the largest of the three, followed by the posterior and the anterior.
In some mammals these muscles can adjust the direction of the pinna. In humans these muscles possess very little action.
The auricularis anterior draws the auricula forward and upward, the auricularis superior slightly raises it, and the auricularis posterior draws it backward. The superior auricular muscle also acts as a stabilizer of the occipitofrontalis muscle and as a weak brow lifter.[5] The presence of auriculomotor activity in the posterior auricular muscle causes the muscle to contract and cause the pinna to be pulled backwards and flatten when exposed to sudden, surprising sounds.[6]
Function
This section needs expansion. You can help by adding to it. (December 2013)
One consequence of the configuration of the outer ear is selectively to boost the sound pressure 30- to 100-fold for frequencies around 3 kHz. This amplification makes humans most sensitive to frequencies in this range—and also explains why they are particularly prone to acoustical injury and hearing loss near this frequency. Most human speech sounds are also distributed in the bandwidth around 3 kHz.[7]
Clinical significance
Malformations of the external ear can be a consequence of hereditary disease, or exposure to environmental factors such as radiation, infection. Such defects include:
Goldenhar syndrome, a combination of developmental abnormalities affecting the ears, eyes, bones of the skull, and vertebrae, inherited in an autosomal dominant manner.[14]
Treacher Collins syndrome, characterised by dysplasia of the auricle, atresia of the bony part of the auditory canal, hypoplasia of the auditory ossicles and tympanic cavity, and 'mixed' deafness (both sensorineural and conductive), inherited in an autosomal dominant manner.[15][16]
^Purves, Dale, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, James O. McNamara, and Leonard E. White (2008). "Chapter 13". Neuroscience. 4th ed. Sinauer Associates. p. 317. ISBN978-0-87893-697-7.{{cite book}}: CS1 maint: multiple names: authors list (link)