OrthoCAD Network Research Cell is a federally funded research and development facility in the Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India.[3] The Laboratory's primary function is the design and development of reconstruction systems for orthopaedic and other applications, the current focus is on mega-implants for limb-saving surgery, mainly for children affected by bone cancer. The Cell later led to the establishment of Biomedical Engineering and Technology (incubation) Centre (BETiC).
Mission
The mission of the OrthoCAD group is to develop indigenous research and development capabilities on medical implants, surgical instruments (Armamentarium), testing protocol, and surgery planning and navigation system. This is expected to respond to the growing medical needs of Indian patients, to provide affordable and available devices, and to train graduates[4] as well as research scientists in the area of Biomedical engineering and manufacturing.
Research partners
The OrthoCAD Network Research Cell was established in January 2007 in the Department of Mechanical Engineering at IIT Bombay.[3] It is supported by the Office of the Principal Scientific Advisor to the Government of India, New Delhi. In 2017, a follow-on funding was released by the Office to NFTDC for pilot production and human clinical trials.
The R&D team comprises mechanical engineers, orthopaedic surgeons and materials scientists from
^Subburaj, K.; Ravi, B.; Agarwal, M.G. (2009). "Automated identification of anatomical landmarks on 3D bone models reconstructed from CT scan images". Computerized Medical Imaging and Graphics. 33 (5): 359–368. doi:10.1016/j.compmedimag.2009.03.001. PMID19345065.
^K. Subburaj, B. Ravi, and M.G. Agarwal, "Automated 3D geometric reasoning in computer assisted joint reconstructive surgery," IEEE Conference on Automation Science and Engineering, Bangalore, India, 22-25 Aug, (2009), 367-372, PDF
^Subburaj, K; Ravi, B; Agarwal, Manish (2010). "Computer-aided methods for assessing lower limb deformities in orthopaedic surgery planning". Computerized Medical Imaging and Graphics. 34 (4): 277–288. doi:10.1016/j.compmedimag.2009.11.003. PMID19963346.
^B. Ravi, Anip Sharma and Manish Agarwal, "Haptic Solid Modeling for Pelvic Bone Tumor Resection Planning and Prosthesis Development," International CAD Conference (CAD'05), Bangkok, 20–24 June 2005.
^ abB. Ravi and Manish Agarwal, "Computer-aided Development of Mega Endo-Prostheses," chapter in the book, Bio-Materials and Prototyping Applications in Medicine, (Eds.) Bopaya Bidanda and Paolo Bartolo, Springer, USA, ISBN978-0-387-47682-7 (2007). doi:10.1007/978-0-387-47683-4_10